887 resultados para Nonrandom two-liquid model
Resumo:
In this paper the effects of a transfer on the intertemporal terms of trade are examined in the context of a simple two-country, two-period model. When intertemporal trade occurs because the two economies have different rates of time preference, a transfer improves the terms of trade of the paying country. Alternatively, when trade occurs owing to international differences in the endowments of goods over the two periods, the effect of a transfer depends on (a) the relationship between the interest rate and the rates of time preference of the two countries and (b) the relationship between their elasticities of intertemporal consumption substitution.
Resumo:
The structures of (1 - x) Na0.5Bi0.5TiO3-(x) CaTiO3 at room temperature have been investigated using neutron powder diffraction and dielectric studies. The system exhibits an orthorhombic (Pbnm) structure for x >= 0.15 and rhombohedral (R3c) for x <= 0.05. For x = 0.10, though the neutron diffraction pattern shows features of the orthorhombic (Pbnm) structure, Rietveld refinement using this structure shows a drastic reduction in the in-phase tilt angle (similar to 4 degrees) as compared to the corresponding value (similar to 8 degrees) for a neighbouring composition x = 0.15. The neutron diffraction pattern of x = 0.10 could be fitted equally well using a two-phase model (R3c + Pbnm) with orthorhombic as the minor phase (22%), without the need for a drastic decrease in the in-phase tilt angle. The dielectric studies of x = 0.10 revealed the presence of the polar R3c phase, thereby favouring the phase coexistence model, instead of a single-phase Pbnm structure, for this composition.
Resumo:
Semiconductor Bloch equations, which microscopically describe the dynamics of a Coulomb interacting, spin-unpolarized electron-hole plasma, can be solved in two limits: the coherent and the quasiequilibrium regimes. These equations have been recently extended to include the spin degree of freedom and used to explain spin dynamics in the coherent regime. In the quasiequilibrium limit, one solves the Bethe-Salpeter equation in a two-band model to describe how optical absorption is affected by Coulomb interactions within a spin unpolarized plasma of arbitrary density. In this work, we modified the solution of the Bethe-Salpeter equation to include spin polarization and light holes in a three-band model, which allowed us to account for spin-polarized versions of many-body effects in absorption. The calculated absorption reproduced the spin-dependent, density-dependent, and spectral trends observed in bulk GaAs at room temperature, in a recent pump-probe experiment with circularly polarized light. Hence, our results may be useful in the microscopic modeling of density-dependent optical nonlinearities due to spin-polarized carriers in semiconductors.
Resumo:
To a large extent, lakes can be described with a one-dimensional approach, as their main features can be characterized by the vertical temperature profile of the water. The development of the profiles during the year follows the seasonal climate variations. Depending on conditions, lakes become stratified during the warm summer. After cooling, overturn occurs, water cools and an ice cover forms. Typically, water is inversely stratified under the ice, and another overturn occurs in spring after the ice has melted. Features of this circulation have been used in studies to distinguish between lakes in different areas, as basis for observation systems and even as climate indicators. Numerical models can be used to calculate temperature in the lake, on the basis of the meteorological input at the surface. The simple form is to solve the surface temperature. The depth of the lake affects heat transfer, together with other morphological features, the shape and size of the lake. Also the surrounding landscape affects the formation of the meteorological fields over the lake and the energy input. For small lakes the shading by the shores affects both over the lake and inside the water body bringing limitations for the one-dimensional approach. A two-layer model gives an approximation for the basic stratification in the lake. A turbulence model can simulate vertical temperature profile in a more detailed way. If the shape of the temperature profile is very abrupt, vertical transfer is hindered, having many important consequences for lake biology. One-dimensional modelling approach was successfully studied comparing a one-layer model, a two-layer model and a turbulence model. The turbulence model was applied to lakes with different sizes, shapes and locations. Lake models need data from the lakes for model adjustment. The use of the meteorological input data on different scales was analysed, ranging from momentary turbulent changes over the lake to the use of the synoptical data with three hour intervals. Data over about 100 past years were used on the mesoscale at the range of about 100 km and climate change scenarios for future changes. Increasing air temperature typically increases water temperature in epilimnion and decreases ice cover. Lake ice data were used for modelling different kinds of lakes. They were also analyzed statistically in global context. The results were also compared with results of a hydrological watershed model and data from very small lakes for seasonal development.
Resumo:
This research has been prompted by an interest in the atmospheric processes of hydrogen. The sources and sinks of hydrogen are important to know, particularly if hydrogen becomes more common as a replacement for fossil fuel in combustion. Hydrogen deposition velocities (vd) were estimated by applying chamber measurements, a radon tracer method and a two-dimensional model. These three approaches were compared with each other to discover the factors affecting the soil uptake rate. A static-closed chamber technique was introduced to determine the hydrogen deposition velocity values in an urban park in Helsinki, and at a rural site at Loppi. A three-day chamber campaign to carry out soil uptake estimation was held at a remote site at Pallas in 2007 and 2008. The atmospheric mixing ratio of molecular hydrogen has also been measured by a continuous method in Helsinki in 2007 - 2008 and at Pallas from 2006 onwards. The mean vd values measured in the chamber experiments in Helsinki and Loppi were between 0.0 and 0.7 mm s-1. The ranges of the results with the radon tracer method and the two-dimensional model were 0.13 - 0.93 mm s-1 and 0.12 - 0.61 mm s-1, respectively, in Helsinki. The vd values in the three-day campaign at Pallas were 0.06 - 0.52 mm s-1 (chamber) and 0.18 - 0.52 mm s-1 (radon tracer method and two-dimensional model). At Kumpula, the radon tracer method and the chamber measurements produced higher vd values than the two-dimensional model. The results of all three methods were close to each other between November and April, except for the chamber results from January to March, while the soil was frozen. The hydrogen deposition velocity values of all three methods were compared with one-week cumulative rain sums. Precipitation increases the soil moisture, which decreases the soil uptake rate. The measurements made in snow seasons showed that a thick snow layer also hindered gas diffusion, lowering the vd values. The H2 vd values were compared to the snow depth. A decaying exponential fit was obtained as a result. During a prolonged drought in summer 2006, soil moisture values were lower than in other summer months between 2005 and 2008. Such conditions were prevailing in summer 2006 when high chamber vd values were measured. The mixing ratio of molecular hydrogen has a seasonal variation. The lowest atmospheric mixing ratios were found in the late autumn when high deposition velocity values were still being measured. The carbon monoxide (CO) mixing ratio was also measured. Hydrogen and carbon monoxide are highly correlated in an urban environment, due to the emissions originating from traffic. After correction for the soil deposition of H2, the slope was 0.49±0.07 ppb (H2) / ppb (CO). Using the corrected hydrogen-to-carbon-monoxide ratio, the total hydrogen load emitted by Helsinki traffic in 2007 was 261 t (H2) a-1. Hydrogen, methane and carbon monoxide are connected with each other through the atmospheric methane oxidation process, in which formaldehyde is produced as an important intermediate. The photochemical degradation of formaldehyde produces hydrogen and carbon monoxide as end products. Examination of back-trajectories revealed long-range transportation of carbon monoxide and methane. The trajectories can be grouped by applying cluster and source analysis methods. Thus natural and anthropogenic emission sources can be separated by analyzing trajectory clusters.
Resumo:
Bubble formation from single horizontal orifices submerged in Newtonian liquids has been investigated for such chamber volumes that both the pressure inside the chamber and flow rate into the bubble are time dependent. The data collected show that under these conditions the bubble volume decreases exponentially with increase in orifice submergence. The equations for the generalized two stage model of bubble formation, taking the variation of gas flow rate with time into account, have been derived. These equations reduce to the cases of constant gas flow rate and constant pressure when adequate constraints are imposed. The results obtained under intermediate conditions have been quantitatively explained on the basis of these equations.
Resumo:
Veri-aivoeste suojelee aivoja verenkierron vierasaineilta. Veri-aivoestettä tutkivia in vivo ja in vitro -menetelmiä on raportoitu laajasti kirjallisuudessa. Yhdisteiden farmakokinetiikka aivoissa kuvaavia tietokonemalleja on esitetty vain muutamia. Tässä tutkimuksessa kerättiin kirjallisuudesta aineisto eri in vitro ja in vivo -menetelmillä määritetyistä veri-aivoesteen permeabiliteettikertoimista. Lisäksi tutkimuksessa rakennettiin kaksi veri-aivoesteen farmakokineettista tietokonemallia, mikrodialyysimalli ja efluksimalli. Mikrodialyysimalli on yksinkertainen kahdesta tilasta (verenkierto ja aivot) koostuva farmakokineettinen malli. Mikrodialyysimallilla simuloitiin in vivo määritettyjen parametrien perusteella viiden yhdisteen pitoisuuksia rotan aivoissa ja verenkierrossa. Mallilla ei saatu täsmällisesti in vivo -tilannetta vastaavia pitoisuuskuvaajia johtuen mallin rakenteessa tehdyistä yksinkertaistuksista, kuten aivokudostilan ja kuljetinproteiinien kinetiikan puuttuminen. Efluksimallissa on kolme tilaa, verenkierto, veri-aivoesteen endoteelisolutila ja aivot. Efluksimallilla tutkittiin teoreettisten simulaatioiden avulla veri-aivoesteen luminaalisella membraanilla sijaitsevan aktiivisen efluksiproteiinin ja passiivisen permeaation merkitystä yhdisteen pitoisuuksiin aivojen solunulkoisessa nesteessä. Tutkittava parametri oli vapaan yhdisteen pitoisuuksien suhde aivojen ja verenkierron välillä vakaassa tilassa (Kp,uu). Tuloksissa havaittiin efluksiproteiinin vaikutus pitoisuuksiin Michaelis-Mentenin kinetiikan mukaisesti. Efluksimalli sopii hyvin teoreettisten simulaatioiden tekemiseen. Malliin voidaan lisätä aktiivisia kuljettimia. Teoreettisten simulaatioiden avulla voidaan yhdistää in vitro ja in vivo tutkimuksien tuloksia ja osatekijöitä voidaan tutkia yhdessä simulaatiossa.
Resumo:
We address the problem of distributed space-time coding with reduced decoding complexity for wireless relay network. The transmission protocol follows a two-hop model wherein the source transmits a vector in the first hop and in the second hop the relays transmit a vector, which is a transformation of the received vector by a relay-specific unitary transformation. Design criteria is derived for this system model and codes are proposed that achieve full diversity. For a fixed number of relay nodes, the general system model considered in this paper admits code constructions with lower decoding complexity compared to codes based on some earlier system models.
Resumo:
A simplified two-temperature model is presented for the vibrational energy levels of the N2O and N2 molecules of an N2O-N2-He gasdynamic laser (GDL), and the governing equations for the unsteady flow of the gas mixture in a convergent-divergent contour nozzle are solved using a time-dependent numerical technique. Final steady-state distributions are obtained for vibrational temperatures, population inversion, and the small-signal laser gain along the nozzle. It is demonstrated that, for plenum temperatures lower than 1200 K, an N2O GDL such as the present is more efficient than a CO2 GDL in identical operating conditions
Resumo:
The model for spin-state transitions described by Bari and Sivardiere (1972) is static and can be solved exactly even when the dynamics of the lattice are included; the dynamic model does not, however, show any phase transition. A coupling between the octahedra, on the other hand, leads to a phase transition in the dynamical two-sublattice displacement model. A coupling of the spin states to the cube of the sublattice displacement leads to a first-order phase transition. The most reasonable model appears to be a two-phonon model in which an ion-cage mode mixes the spin states, while a breathing mode couples to the spin states without mixing. This model explains the non-zero population of high-spin states at low temperatures, temperature-dependent variations in the inverse susceptibility and the spin-state population ratio, as well as the structural phase transitions accompanying spin-state transitions found in some systems.
Resumo:
The performance of the 240 m2 solar pond in Bangalore is discussed. The problems of erosion of gradient zone and formation of internal convective zones is highlighted. The technique of passive salt addition is shown to be a viable alternative for salt recycling. Different techniques of heat extraction are discussed and the use of an immersed copper heat exchanger is shown to be most convenient. A two-zone model for prediction of the seasonal structure of the solar pond performance is proposed. The model is shown to simulate the seasonal structure of the observed variation of the temperature in the storage zone.
Resumo:
An important problem regarding pin joints in a thermal environment is addressed. The motivation emerges from structural safety requirements in nuclear and aerospace engineering. A two-dimensional model of a smooth, rigid misfit pin in a large isotropic sheet is considered as an abstraction. The sheet is subjected to a biaxial stress system and far-field unidirectional heat flow. The thermoelastic analysis is complex due to non-linear load-dependent contact and separation conditions at the pin-hole interface and the absence of existence and uniqueness theorems for the class of frictionless thermoelastic contact problems. Identification of relevant parameters and appropriate synthesis of thermal and mechanical variables enables the thermomechanical generalization of pin-joint behaviour. This paper then proceeds to explore the possibility of multiple solutions in such problems, especially interface contact configuration.
Resumo:
The ability of a population to shift from one adaptive peak to another was examined for a two-locus model with different degrees of assortative mating, selection, and linkage. As expected, if the proportion of the population that mates assortatively increases, so does its ability to shift to a new peak. Assortative mating affects this process by allowing the mean fitness of a population to increase monotonically as it passes through intermediate gene frequencies on the way to a new, higher, homozygotic peak. Similarly, if the height of the new peak increases or selection against intermediates becomes less severe, the population becomes more likely to shift to a new peak. Close linkage also helps the shift to a new adaptive peak and acts similarly to assortative mating, but it is not necessary for such a shift as was previously thought. When a population shifts to a new peak, the number of generations required is significantly less than that needed to return to the original peak when that happens. The short period of time required may be an explanation for rapid changes in the geological record. Under extremely high degrees of assortative mating, the shift takes longer, presumably because of the difficulty of breaking up less favored allelic combinations.
Resumo:
A steel ball was slid on aluminium-silicon alloys at different temperatures. After the coefficient of friction had been measured, the surface shear stress was deconvoluted using a two-term model of friction. The ratio of surface shear stress to bulk hardness was calculated as a function of temperature, silicon content and alloying additions. These results are qualitatively similar to those recorded for pre-seizure specimens slid against an En24 disc in a pin-on-disc machine. This similarity, when viewed in the context of the phenomenon of bulk shear, provides a model for seizure of these alloys.
Resumo:
Although the prevalent mathematical description of the Poynting-Robertson effect is correct, its physical interpretation is sometimes problematic. By means of a two-parameter model, we revisit the effect in order to get a better physical understanding of it. The principal conclusion is that the motion of a dust in circumsolar orbit is governed only by solar radiation absorption and not by the asymmetry of reemission, even when viewed in the rest-frame of the Sun. (C) 1999 Academic Press.