966 resultados para Non-destructive methods


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Results of previous studies conducted by different researchers have shown that impact techniques can be used to evaluate firmness (Delwiche et al., 1989; Delwiche et al.;1996; Jaren et al., 1992; Ruiz Altisent et al., 1996). To impact the fruit with a small spherical impactor of known mass and radius of curvature and measure the acceleration of the impactor is a technique described by Chen et al. (1985) and used by several researchers for sensing fruit firmness (Jaren et al., 1992; Correa et al.; 1992). The advantages of this method vs. a force sensor that measures the force as a function of time is that the measured impact-acceleration response is independent of the fruit mass and is less sensitive to the variation in the radius of curvature of the fruit (Chen et al., 1996). Ruiz Altisent et al. (1993) developed and used a 50 g impactor with a 19 mm diameter spherical tip, dropping from different height for fruits (apples, pears, avocados, melons, peaches ...). Another impact device for firmness sensing of fruits was developed by Chen and Ruiz Altisent (1996). They designed and fabricated an experimental low-mass impact sensor for high-speed sensing of fruit firmness. The impactor consisted of a semi-spherical impacting tip attached to the end (near the centre of percussion) of a pivoting arm. Impact is done by swinging the impactor to collide with the fruit. It has been implemented for on-line use. In both devices a small accelerometer is mounted behind the impacting tip. Lateral impactor and vertical impactor have been used in laboratory and the results from non-destructive impact tests have contributed to standardise methods to measure fruit firmness: Barreiro (1992) compared impact parameters and results of Magness-Taylor penetration tests for apples, pears, apricots [and peaches; Agulheiro (1994) studied the behaviour of the impact parameters during seven weeks of cold storage of two melon varieties; Ortiz (1998) used low energy impact and NIR procedures to segregate non crispy, non firm and soft peaches. Steinmetz (1996) compared various non-destructive firmness sensors, based on sound, impact and micro-deformation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and play a significant role in the global cycles of carbon, nitrogen and water. The purpose of this study is to use field-based and satellite remote-sensing-based methods to assess leaf nitrogen pools in five diverse European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, the Netherlands and Italy. REGFLEC (REGularized canopy reFLECtance) is an advanced image-based inverse canopy radiative transfer modelling system which has shown proficiency for regional mapping of leaf area index (LAI) and leaf chlorophyll (CHLl) using remote sensing data. In this study, high spatial resolution (10–20 m) remote sensing images acquired from the multispectral sensors aboard the SPOT (Satellite For Observation of Earth) satellites were used to assess the capability of REGFLEC for mapping spatial variations in LAI, CHLland the relation to leaf nitrogen (Nl) data in five diverse European agricultural landscapes. REGFLEC is based on physical laws and includes an automatic model parameterization scheme which makes the tool independent of field data for model calibration. In this study, REGFLEC performance was evaluated using LAI measurements and non-destructive measurements (using a SPAD meter) of leaf-scale CHLl and Nl concentrations in 93 fields representing crop- and grasslands of the five landscapes. Furthermore, empirical relationships between field measurements (LAI, CHLl and Nl and five spectral vegetation indices (the Normalized Difference Vegetation Index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green chlorophyll index) were used to assess field data coherence and to serve as a comparison basis for assessing REGFLEC model performance. The field measurements showed strong vertical CHLl gradient profiles in 26% of fields which affected REGFLEC performance as well as the relationships between spectral vegetation indices (SVIs) and field measurements. When the range of surface types increased, the REGFLEC results were in better agreement with field data than the empirical SVI regression models. Selecting only homogeneous canopies with uniform CHLl distributions as reference data for evaluation, REGFLEC was able to explain 69% of LAI observations (rmse = 0.76), 46% of measured canopy chlorophyll contents (rmse = 719 mg m−2) and 51% of measured canopy nitrogen contents (rmse = 2.7 g m−2). Better results were obtained for individual landscapes, except for Italy, where REGFLEC performed poorly due to a lack of dense vegetation canopies at the time of satellite recording. Presence of vegetation is needed to parameterize the REGFLEC model. Combining REGFLEC- and SVI-based model results to minimize errors for a "snap-shot" assessment of total leaf nitrogen pools in the five landscapes, results varied from 0.6 to 4.0 t km−2. Differences in leaf nitrogen pools between landscapes are attributed to seasonal variations, extents of agricultural area, species variations, and spatial variations in nutrient availability. In order to facilitate a substantial assessment of variations in Nl pools and their relation to landscape based nitrogen and carbon cycling processes, time series of satellite data are needed. The upcoming Sentinel-2 satellite mission will provide new multiple narrowband data opportunities at high spatio-temporal resolution which are expected to further improve remote sensing capabilities for mapping LAI, CHLl and Nl.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Safety is one of the most important feature in the aviation industry, and this involves too many factors. One of these is the aircraft maintenance. Over time, the procedures have been changing, and improving themselves. Non Destructive Testing (NDT) appeared in the late 19th century as a great option, because it enabled to inspect any structure without damaging it. Nowadays, there are several kinds of NDT, but ultrasound is one of the most widely used. This Master Thesis is devoted to an innovative ultrasound technique for crack detection. A technique, whose main aim lies in getting a good location of defects from a few measures, breaking with the currently widespread methods, as phased array. It is not necessary to use trains of waves, only discrete excitations, which means a great saving of time and energy. This work is divided into two steps: the first is to develop a multiphysics simulator, which is able to solve linear elasticity 3D problems (via Finite Element Method, FEM). This simulator allows to obtain in a computationally efficient way the displacement field for different frequencies and excitations. The solution of this elastic problem is needed to be used in the second step, which consists of generating a code that implements a mathematical tool named topological derivative, allowing to locate defects in the studied domain. In this work, the domain is a plate, and the defect is a hidden spherical void. The simulator has been developed using open source software (Elmer, Gmsh, ...), achieving a highly versatile simulator, which allows to change the configuration easily: domain size and shape, number and position of transducers, etc. Just one comercial software is used, Matlab. It is used to implement the topological derivative. In this work, the performance of the method is tested in several examples comparing the results when one or more frequencies are considered for different configurations of emisors/receptors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Las técnicas de speckle tienen un gran interés científico e ingenieril, ya que son métodos de ejecución rápida y no destructiva, con base en el análisis de las fluctuaciones de intensidad de la radiación producida cuando la luz coherente de un haz láser es esparcida por un material dado. En este caso se produce un patrón aleatorio de interferencia y difracción donde la suma de las componentes desfasadas dará lugar a máximos y mínimos de intensidad en distintos puntos del espacio. Éste, pese a tratarse de un ruido nocivo en multitud de áreas tales como la transmisión de señales o la holografía, tiene importantes propiedades físicas que lo caracterizan y lo hacen útil como medio para analizar sistemas reales de muy diversa índole. En el presente estudio, se ha llevado a cabo un análisis polarimétrico de la radiación aleatoria esparcida por una serie de muestras metálicas y dieléctricas con el objetivo de establecer una base comparativa que nos permita poder distinguir unas de otras. Para este fin se han comparado los parámetros de polarización de Stokes, el grado de polarización de la luz, las distribuciones de intensidad y el tamaño medio del speckle registrado en los distintos patrones de intensidad. Además, se analizará la dependencia de la rugosidad en el grado de polarización de la luz para los distintos medios sometidos a estudio. Abstract Speckle techniques have a great scientific and engineering interest as they are methods of rapid and non-destructive execution, based on the analysis of the fluctuations of intensity of the radiation produced when coherent light of a laser beam is scattered by a material given. In this case, a random pattern of interference and diffraction occurs where the sum of phase shifted components will result in maximum or minimum of intensity at different points in space. This, despite being a harmful noise in many areas such as signal transmission or holography, has important physical properties that characterize it and make it useful as a means to analyze real systems of various kinds. In the present study, we have conducted a polarimetric analysis of the random radiation scattered by a series of metal and dielectric samples in order to establish a comparative basis to allow us to distinguish one from another. To this end we have compared, the stokes polarization parameters, the degree of polarization (DOP), the intensity distributions and the average size of the speckle registered in the different intensity patterns. Furthermore, dependence of roughness in the DOP of light for the different means under study will be analyzed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hoy en día, el refuerzo y reparación de estructuras de hormigón armado mediante el pegado de bandas de polímeros reforzados con fibras (FRP) se emplea cada vez con más frecuencia a causa de sus numerosas ventajas. Sin embargo, las vigas reforzadas con esta técnica pueden experimentar un modo de fallo frágil a causa del despegue repentino de la banda de FRP a partir de una fisura intermedia. A pesar de su importancia, el número de trabajos que abordan el estudio de este mecanismo de fallo y su monitorización es muy limitado. Por ello, el desarrollo de metodologías capaces de monitorizar a largo plazo la adherencia de este refuerzo a las estructuras de hormigón e identificar cuándo se inicia el despegue de la banda constituyen un importante desafío a abordar. El principal objetivo de esta tesis es la implementación de una metodología fiable y efectiva, capaz de detectar el despegue de una banda de FRP en una viga de hormigón armado a partir de una fisura intermedia. Para alcanzar este objetivo se ha implementado un procedimiento de calibración numérica a partir de ensayos experimentales. Para ello, en primer lugar, se ha desarrollado un modelo numérico unidimensional simple y no costoso representativo del comportamiento de este tipo vigas de hormigón reforzadas con FRP, basado en un modelo de fisura discreta para el hormigón y el método de elementos espectrales. La formación progresiva de fisuras a flexion y el consiguiente despegue en la interface entre el hormigón y el FRP se formulan mediante la introducción de un nuevo elemento capaz de representar ambos fenómenos simultáneamente sin afectar al procedimiento numérico. Además, con el modelo propuesto, se puede obtener de una forma sencilla la respuesta dinámica en altas frecuencias de este tipo de estructuras, lo cual puede hacer muy útil su uso como herramienta de diagnosis y detección del despegue en su fase inicial mediante una monitorización de la variación de las características dinámicas locales de la estructura. Un método de evaluación no destructivo muy prometedor para la monitorización local de las estructuras es el método de la impedancia usando sensores-actuadores piezoeléctricos (PZT). La impedancia eléctrica de los sensores PZT se puede relacionar con la impedancia mecánica de las estructuras donde se encuentran adheridos Ya que la impedancia mecánica de una estructura se verá afectada por su deterioro, se pueden implementar indicadores de daño mediante una comparación del espectro de admitancia (inversa de la impedancia) a lo largo de distintas etapas durante el periodo de servicio de una estructura. Cualquier cambio en el espectro se podría interpretar como una variación en la integridad de la estructura. La impedancia eléctrica se mide a altas frecuencias con lo cual esta metodología debería ser muy sensible a la detección de estados de daño incipiente local, tal como se desea en la aplicación de este trabajo. Se ha implementado un elemento espectral PZT-FRP como extensión del modelo previamente desarrollado, con el objetivo de poder calcular numéricamente la impedancia eléctrica de sensores PZT adheridos a bandas de FRP sobre una viga de hormigón armado. El modelo, combinado con medidas experimentales captadas mediante sensores PZT, se implementa en el marco de una metodología de calibración de modelos para detectar cuantitativamente el despegue en la interfase entre una banda de FRP y una viga de hormigón. El procedimiento de optimización se resuelve empleando el método del enjambre cooperativo con un algoritmo bagging. Los resultados muestran una gran aproximación en la estimación del daño para el problema propuesto. Adicionalmente, se ha desarrollado también un método adaptativo para el mallado de elementos espectrales con el objetivo de localizar las zonas dañadas a partir de los resultados experimentales, el cual contribuye a aumentar la robustez y efectividad del método propuesto a la hora de identificar daños incipientes en su aparición inicial. Finalmente, se ha llevado a cabo un procedimiento de optimización multi-objetivo para detectar el despegue inicial en una viga de hormigón a escala real reforzada con FRP a partir de las impedancias captadas con una red de sensores PZT instrumentada a lo largo de la longitud de la viga. Cada sensor aporta los datos para definir cada una de las funciones objetivo que definen el procedimiento. Combinando el modelo previo de elementos espectrales con un algoritmo PSO multi-objetivo el procedimiento de detección de daño resultante proporciona resultados satisfactorios considerando la escala de la estructura y todas las incertidumbres características ligadas a este proceso. Los resultados obtenidos prueban la viabilidad y capacidad de los métodos antes mencionados y también su potencial en aplicaciones reales. Abstract Nowadays, the external bonding of fibre reinforced polymer (FRP) plates or sheets is increasingly used for the strengthening and retrofitting of reinforced concrete (RC) structures due to its numerous advantages. However, this kind of strengthening often leads to brittle failure modes being the most dominant failure mode the debonding induced by an intermediate crack (IC). In spite of its importance, the number of studies regarding the IC debonding mechanism and bond health monitoring is very limited. Methodologies able to monitor the long-term efficiency of bonding and successfully identify the initiation of FRP debonding constitute a challenge to be met. The main purpose of this thesisis the implementation of a reliable and effective methodology of damage identification able to detect intermediate crack debonding in FRP-strengthened RC beams. To achieve this goal, a model updating procedure based on numerical simulations and experimental tests has been implemented. For it, firstly, a simple and non-expensive one-dimensional model based on the discrete crack approach for concrete and the spectral element method has been developed. The progressive formation of flexural cracks and subsequent concrete-FRP interfacial debonding is formulated by the introduction of a new element able to represent both phenomena simultaneously without perturbing the numerical procedure. Furthermore, with the proposed model, high frequency dynamic response for these kinds of structures can also be obtained in a very simple and non-expensive way, which makes this procedure very useful as a tool for diagnoses and detection of debonding in its initial stage by monitoring the change in local dynamic characteristics. One very promising active non-destructive evaluation method for local monitoring is impedance-based structural health monitoring(SHM)using piezoelectric ceramic (PZT) sensor-actuators. The electrical impedance of the PZT can be directly related to the mechanical impedance of the host structural component where the PZT transducers are attached. Since the structural mechanical impedance will be affected by the presence of structural damage, comparisons of admittance (inverse of impedance) spectra at various times during the service period of the structure can be used as damage indicator. Any change in the spectra might be an indication of a change in the structural integrity. The electrical impedance is measured at high frequencies with which this methodology appears to be very sensitive to incipient damage in structural systems as desired for our application. Abonded-PZT-FRP spectral beam element approach based on an extension of the previous discrete crack approach is implemented in the calculation of the electrical impedance of the PZT transducer bonded to the FRP plates of a RC beam. This approach in conjunction with the experimental measurements of PZT actuator-sensors mounted on the structure is used to present an updating methodology to quantitatively detect interfacial debonding between a FRP strip and the host RC structure. The updating procedure is solved by using an ensemble particle swarm optimization approach with abagging algorithm, and the results demonstrate a big improvement for the performance and accuracy of the damage detection in the proposed problem. Additionally, an adaptive strategy of spectral element mesh has been also developed to detect damage location with experimental results, which shows the robustness and effectiveness of the proposed method to identify initial and incipient damages at its early stage. Lastly, multi-objective optimization has been carried out to detect debonding damage in a real scale FRP-strengthened RC beam by using impedance signatures. A net of PZT sensors is distributed along the beam to construct impedance-based multiple objectives under gradually induced damage scenario. By combining the spectral element model presented previously and an ensemble multi-objective PSO algorithm, the implemented damage detection process yields satisfactory predictions considering the scale and uncertainties of the structure. The obtained results prove the feasibility and capability of the aforementioned methods and also their potentials in real engineering applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nondestructive techniques are widely used to assess existing timber structures. The models proposed for these methods are usually performed in the laboratory using small clear wood specimens. But in real situations many anomalies, defects and biological damage are found in wood. In these cases the existing models only indicate that the values are outside normality without providing any other information. To solve this problem, a study of non-destructive probing methods for wood was performed, testing the behaviour of four different techniques (penetration resistance, pullout resistance, drill resistance and chip drill extraction) on wood samples with different biological damage, simulating an in-situ test. The wood samples were obtained from existing Spanish timber structures with biotic damage caused by borer insects, termites, brown rot and white rot. The study concludes that all of the methods offer more or less detailed information about the degree of deterioration of wood, but that the first two methods (penetration and pullout resistance) cannot distinguish between pathologies. On the other hand, drill resistance and chip drill extraction make it possible to differentiate pathologies and even to identify species or damage location. Finally, the techniques used were compared to characterize their advantages and disadvantages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Allergies and food intolerances are at the forefront of institutional interest (European Regulation No 1169/2011) for their impact on consumer health. Allergies to peanuts and other nuts and gluten intolerance, makes production processes involving mixtures of powders a great concern for the industry, given the need to indicate the existence of traces of any of them. The food industry requires non-destructive and non-invasive methods of quantification that meet sensitivity requirements but also specificity levels. Optical methods such as NIR spectrophotometry or hyper-spectral image are currently some of the technologies that show potential success. This is the context of this paper that evaluates how to use NIR spectroscopy (900-1600nm) to detect traces of 15 different kinds of nuts and 20 other flours.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Department of Structural Analysis of the University of Santander has been for a longtime involved in the solution of the country´s practical engineering problems. Some of these have required the use of non-conventional methods of analysis, in order to achieve adequate engineering answers. As an example of the increasing application of non-linear computer codes in the nowadays engineering practice, some cases will be briefly presented. In each case, only the main features of the problem involved and the solution used to solve it will be shown

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper proposes a new application of non-parametric statistical processing of signals recorded from vibration tests for damage detection and evaluation on I-section steel segments. The steel segments investigated constitute the energy dissipating part of a new type of hysteretic damper that is used for passive control of buildings and civil engineering structures subjected to earthquake-type dynamic loadings. Two I-section steel segments with different levels of damage were instrumented with piezoceramic sensors and subjected to controlled white noise random vibrations. The signals recorded during the tests were processed using two non-parametric methods (the power spectral density method and the frequency response function method) that had never previously been applied to hysteretic dampers. The appropriateness of these methods for quantifying the level of damage on the I-shape steel segments is validated experimentally. Based on the results of the random vibrations, the paper proposes a new index that predicts the level of damage and the proximity of failure of the hysteretic damper

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Na atual conjuntura, no que se refere à energia renovável, o etanol é um dos principais, se não o mais importante, produto brasileiro. Proveniente da fermentação de açúcares, processo conhecido há séculos, tem se tornado o carro chefe do país como garantia de voz ativa nas discussões energéticas pelo mundo afora. Porém, atualmente, o setor sucroalcooleiro está passando por um momento de cautela devido à queda de produtividade e longevidade dos canaviais ao longo dos últimos anos ocasionados principalmente pela mecanização da colheita e plantio da cana-de-açúcar. Cabe ressaltar que as perdas de produção podem ser ainda maiores diante da ausência do manejo varietal e de cuidados adequados em relação à sanidade de mudas utilizadas para a multiplicação de viveiros. Nesse sentido, nos últimos anos, o emprego da irrigação no cultivo da cana-de-açúcar associada a outras tecnologias de plantio, tais como formação de viveiros com mudas pré-brotadas, vem merecendo papel de destaque. Esse cenário obriga pesquisadores a buscar novas tecnologias para aumento de produtividade, longevidade dos canaviais e redução do custo por tonelada de cana produzida, tais como a produção de mudas sadias para formação de viveiros de cana-de-açúcar. Diante disso, a presente pesquisa teve por objetivo, submeter mudas pré-brotadas de cana-de-açúcar, durante plantio de inverno, na região de Piracicaba, SP, sob diferentes lâminas de irrigação (10 mm; 20 mm; 30 mm e 40 mm), utilizando um sistema de irrigação por aspersão com alas móveis. Dessa forma, buscou-se determinar qual seria a melhor lâmina de irrigação, necessária para garantir o melhor índice de pegamento e alto vigor no estabelecimento e desenvolvimento das mudas pré-brotadas de cana-de-açúcar para a região de Piracicaba-SP. Foram feitas avaliações periódicas (não destrutivas), tais como: mortalidade das mudas; clorofila total na folha; tamanho da muda; índice de área foliar; número de perfilhos brotados por metro; percentual de falha no canavial. Além de avaliações periódicas (destrutivas), tais como: avaliação do tamanho da raiz; massa seca da raiz; massa seca da parte aérea e número de perfilhos totais. As análises estatísticas das lâminas de irrigação foram realizadas pelo método de Tukey ao nível de 5% de probabilidade. Diante dos resultados obtidos, verificou-se que a lâmina de 10 mm possibilitou os melhores índices de pegamento e proporcionou um índice superior a 97,8% de sobrevivência de mudas. Também, observou-se uma estreita relação entre o índice de mortalidade no plantio de inverno das mudas pré-brotadas de cana-de-açúcar com o manejo da irrigação, a qual nos primeiros dias após plantio foi fundamental para o estabelecimento e desenvolvimento das mudas. Cabe ressaltar que em caso da adoção de outro manejo de irrigação, com lâminas maiores, nessas condições experimentais, possivelmente haveria perdas de água, cujo fato nos dias atuais não é o ideal tendo em vista a busca por economia e manejo racional da água.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of TDR for measurement of soil water content and electrical conductivity has resulted in a large shift in measurement methods for a breadth of soil and hydrological characterization efforts. TDR has also opened new possibilities for soil and plant research. Five examples show how TDR has enhanced our ability to conduct our soil- and plant-water research. (i) Oxygen is necessary for healthy root growth and plant development but quantitative evaluation of the factors controlling oxygen supply in soil depends on knowledge of the soil water content by TDR. With water content information we have modeled successfully some impact of tillage methods on oxygen supply to roots and their growth response. (ii) For field assessment of soil mechanical properties influencing crop growth, water content capability was added to two portable soil strength measuring devices; (a) A TDT (Time Domain Transmittivity)-equipped soil cone penetrometer was used to evaluate seasonal soil strengthwater content relationships. In conventional tillage systems the relationships are dynamic and achieve the more stable no-tillage relationships only relatively late in each growing season; (b) A small TDR transmission line was added to a modified sheargraph that allowed shear strength and water content to be measured simultaneously on the same sample. In addition, the conventional graphing procedure for data acquisition was converted to datalogging using strain gauges. Data acquisition rate was improved by more than a factor of three with improved data quality. (iii) How do drought tolerant plants maintain leaf water content? Non-destructive measurement of TDR water content using a flat serpentine triple wire transmission line replaces more lengthy procedures of measuring relative water content. Two challenges remain: drought-stressed leaves alter salt content, changing electrical conductivity, and drought induced changes in leaf morphology affect TDR measurements. (iv) Remote radar signals are reflected from within the first 2 cm of soil. Appropriate calibration of radar imaging for soil water content can be achieved by a parallel pair of blades separated by 8 cm, reaching 1.7 cm into soil and forming a 20 cm TDR transmission line. The correlation between apparent relative permittivity from TDR and synthetic aperture radar (SAR) backscatter coefficient was 0.57 from an airborne flyover. These five examples highlight the diversity in the application of TDR in soil and plant research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Questa tesi ha lo scopo di indagare lo stato interno di materiali e strutture di diverso tipo tramite sollecitazione acustica o vibrazionale. Si sono sottoposte le strutture in esame a sollecitazione acustica (mediante speaker) o meccanica (mediante martello strumentato o altro percussore), acquisendo le onde meccaniche di ritorno con trasduttori microfonici, array microfonici, ed accelerometri. Si è valutato, di caso in caso, quale fosse la strumentazione più adeguata e quale il parametro da prendere in considerazione per effettuare una discriminazione tra oggetto integro ed oggetto danneggiato o contenente vuoti o inclusioni. Si è riflettuto sui dati raccolti allo scopo di capire quali caratteristiche accomunino strutture apparentemente diverse tra loro, e quali differenzino in realtà - rispetto alla possibilità di una efficace diagnosi acustica - strutture apparentemente simili. Si è sviluppato uno script su piattaforma MatLab® per elaborare i dati acquisiti. Tutte le analisi effettuate si basano sull'osservazione dello spettro acustico del segnale di ritorno dall'oggetto sollecitato. Ove necessario, si sono osservati la funzione di trasferimento del sistema (per il calcolo della quale si crosscorrelano i segnali di output e di input) o il waterfall. Da questa base, si sono sviluppati parametri specifici per i vari casi. Gli esami più proficui si sono effettuati sui solai, per la verifica dello sfondellamento dei laterizi. Anche lo studio su prodotti dell'industria alimentare (salami) si è rivelato molto soddisfacente, tanto da gettare le basi per la produzione di un tester da utilizzare in stabilimento per il controllo di qualità dei pezzi.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bone is the second most widely transplanted tissue after blood. Synthetic alternatives are needed that can reduce the need for transplants and regenerate bone by acting as active temporary templates for bone growth. Bioactive glasses are one of the most promising bone replacement/regeneration materials because they bond to existing bone, are degradable and stimulate new bone growth by the action of their dissolution products on cells. Sol-gel-derived bioactive glasses can be foamed to produce interconnected macropores suitable for tissue ingrowth, particularly cell migration and vascularization and cell penetration. The scaffolds fulfil many of the criteria of an ideal synthetic bone graft, but are not suitable for all bone defect sites because they are brittle. One strategy for improving toughness of the scaffolds without losing their other beneficial properties is to synthesize inorganic/organic hybrids. These hybrids have polymers introduced into the sol-gel process so that the organic and inorganic components interact at the molecular level, providing control over mechanical properties and degradation rates. However, a full understanding of how each feature or property of the glass and hybrid scaffolds affects cellular response is needed to optimize the materials and ensure long-term success and clinical products. This review focuses on the techniques that have been developed for characterizing the hierarchical structures of sol-gel glasses and hybrids, from atomicscale amorphous networks, through the covalent bonding between components in hybrids and nanoporosity, to quantifying open macroporous networks of the scaffolds. Methods for non-destructive in situ monitoring of degradation and bioactivity mechanisms of the materials are also included. © 2012 The Royal Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis describes an experimental study of the abrasion resistance of concrete at both the macro and micro levels. This is preceded by a review related to friction and wear, methods of test for assessing abrasion resistance, and factors influencing the abrasion resistance of concrete. A versatile test apparatus was developed to assess the abrasion resistance of concrete. This could be operated in three modes and a standardised procedure was established for all tests. A laboratory programme was undertaken to investigate the influence, on abrasion resistance, of three major factors - finishing techniques, curing regimes and surface treatments. The results clearly show that abrasion resistance was significantly affected by these factors, and tentative mechanisms were postulated to explain these observations. To substantiate these mechanisms, the concrete specimens from the macro-study were subjected to micro-structural investigation, using such techniques as 'Mercury Intrusion Forosimetry, Microhardness, Scanning Electron Microscopy, Petrography and Differential Thermal Analysis. The results of this programme clearly demonstrated that the abrasion resistance of concrete is primarily dependent on the microstructure of the concrete nearest to the surface. The viability of indirectly assessing the abrasion resistance was investigated using three non-destructive techniques - Ultrasonic Pulse Velocity, Schmidt Rebound Hardness, and the Initial Surface Absorption Test. The Initial Surface Absorption was found to be most sensitive to factors which were shown to have influenced the abrasion resistance of concrete. An extensive field investigation was also undertaken. The results were used to compare site and laboratorypractices, and the performance in the accelerated abrasion test with the service wear. From this study, criteria were developed for assessing the quality of concrete floor slabs in terms of abrasion resistance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis reports on the development of a technique to evaluate hydraulic conductivities in a soil (Snowcal) subject to freezing conditions. The technique draws on three distinctly different disciplines, Nuclear Physics, Soil Physics and Remote Sensing to provide a non-destructive and reliable evaluation of hydraulic conductivity throughout a freezing test. Thermal neutron radiography is used to provide information on local water/ice contents at anytime throughout the test. The experimental test rig is designed so that the soil matrix can be radiated by a neutron beam, from a nuclear reactor, to obtain radiographs. The radiographs can then be interpreted, following a process of remote sensing image enhancement, to yield information on relative water/ice contents. Interpretation of the radiographs is accommodated using image analysis equipment capable of distinguishing between 256 shades of grey. Remote sensing image enhancing techniques are then employed to develop false colour images which show the movement of water and development of ice lenses in the soil. Instrumentation is incorporated in the soil in the form of psychrometer/thermocouples, to record water potential, electrical resistance probes to enable ice and water to be differentiated on the radiographs and thermocouples to record the temperature gradient. Water content determinations are made from the enhanced images and plotted against potential measurements to provide the moisture characteristic for the soil. With relevant mathematical theory pore water distributions are obtained and combined with water content data to give hydraulic conductivities. The values for hydraulic conductivity in the saturated soil and at the frozen fringe are compared with established values for silts and silty-sands. The values are in general agreement and, with refinement, this non-destructive technique could afford useful information on a whole range of soils. The technique is of value over other methods because ice lenses are actually seen forming in the soil, supporting the accepted theories of frost action. There are economic and experimental restraints to the work which are associated with the use of a nuclear facility, however, the technique is versatile and has been applied to the study of moisture transfer in porous building materials and could be further developed into other research areas.