992 resultados para Nitrogen stress


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global cereal production will need to increase by 50% to 70% to feed a world population of about 9 billion by 2050. This intensification is forecast to occur mostly in subtropical regions, where warm and humid conditions can promote high N2O losses from cropped soils. To secure high crop production without exacerbating N2O emissions, new nitrogen (N) fertiliser management strategies are necessary. This one-year study evaluated the efficacy of a nitrification inhibitor (3,4-dimethylpyrazole phosphate—DMPP) and different N fertiliser rates to reduce N2O emissions in a wheat–maize rotation in subtropical Australia. Annual N2O emissions were monitored using a fully automated greenhouse gas measuring system. Four treatments were fertilized with different rates of urea, including a control (40 kg-N ha−1 year−1), a conventional N fertiliser rate adjusted on estimated residual soil N (120 kg-N ha−1 year−1), a conventional N fertiliser rate (240 kg-N ha−1 year−1) and a conventional N fertiliser rate (240 kg-N ha−1 year−1) with nitrification inhibitor (DMPP) applied at top dressing. The maize season was by far the main contributor to annual N2O emissions due to the high soil moisture and temperature conditions, as well as the elevated N rates applied. Annual N2O emissions in the four treatments amounted to 0.49, 0.84, 2.02 and 0.74 kg N2O–N ha−1 year−1, respectively, and corresponded to emission factors of 0.29%, 0.39%, 0.69% and 0.16% of total N applied. Halving the annual conventional N fertiliser rate in the adjusted N treatment led to N2O emissions comparable to the DMPP treatment but extensively penalised maize yield. The application of DMPP produced a significant reduction in N2O emissions only in the maize season. The use of DMPP with urea at the conventional N rate reduced annual N2O emissions by more than 60% but did not affect crop yields. The results of this study indicate that: (i) future strategies aimed at securing subtropical cereal production without increasing N2O emissions should focus on the fertilisation of the summer crop; (ii) adjusting conventional N fertiliser rates on estimated residual soil N is an effective practice to reduce N2O emissions but can lead to substantial yield losses if the residual soil N is not assessed correctly; (iii) the application of DMPP is a feasible strategy to reduce annual N2O emissions from sub-tropical wheat–maize rotations. However, at the N rates tested in this study DMPP urea did not increase crop yields, making it impossible to recoup extra costs associated with this fertiliser. The findings of this study will support farmers and policy makers to define effective fertilisation strategies to reduce N2O emissions from subtropical cereal cropping systems while maintaining high crop productivity. More research is needed to assess the use of DMPP urea in terms of reducing conventional N fertiliser rates and subsequently enable a decrease of fertilisation costs and a further abatement of fertiliser-induced N2O emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic ethanol exposure leads to dysregulation of the hypothalamic-pituitary-adrenal axis, leading to changes in glucocorticoid release and function that have been proposed to maintain pathological alcohol consumption and increase vulnerability to relapse during abstinence. The objective of this study was to determine whether mifepristone, a glucocorticoid receptor antagonist, plays a role in ethanol self-administration and reinstatement. Male, Long-Evans rats were trained to self-administer either ethanol or sucrose in daily 30 min operant self-administration sessions using a fixed ratio 3 schedule of reinforcement. Following establishment of stable baseline responding, we examined the effects of mifepristone on maintained responding and yohimbine-induced increases in responding for ethanol and sucrose. Lever responding was extinguished in separate groups of rats and animals were tested for yohimbine-induced reinstatement and corticosterone release. We also investigated the effects of local mifepristone infusions into the central amygdala (CeA) on yohimbine-induced reinstatement of ethanol- and sucrose-seeking. In addition, we infused mifepristone into the basolateral amygdala (BLA) in ethanol-seeking animals as an anatomical control. We show that both systemic and intra-CeA (but not BLA) mifepristone administration suppressed yohimbine-induced reinstatement of ethanol-seeking, while only systemic injections attenuated sucrose-seeking. In contrast, baseline consumption, yohimbine-induced increases in responding, and circulating CORT levels were unaffected. The data indicate that the CeA plays an important role in the effects of mifepristone on yohimbine-induced reinstatement of ethanol-seeking. Mifepristone may be a valuable pharmacotherapeutic strategy for preventing relapse to alcohol use disorders and, as it is FDA approved, may be a candidate for clinical trials in the near future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aiming at the large scale numerical simulation of particle reinforced materials, the concept of local Eshelby matrix has been introduced into the computational model of the eigenstrain boundary integral equation (BIE) to solve the problem of interactions among particles. The local Eshelby matrix can be considered as an extension of the concepts of Eshelby tensor and the equivalent inclusion in numerical form. Taking the subdomain boundary element method as the control, three-dimensional stress analyses are carried out for some ellipsoidal particles in full space with the proposed computational model. Through the numerical examples, it is verified not only the correctness and feasibility but also the high efficiency of the present model with the corresponding solution procedure, showing the potential of solving the problem of large scale numerical simulation of particle reinforced materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a computational method for eliminating severe stress concentration at the unsupported railhead ends in rail joints through innovative shape optimization of the contact zone, which is complex due to near field nonlinear contact. With a view to minimizing the computational efforts, hybrid genetic algorithm method coupled with parametric finite element has been developed and compared with the traditional genetic algorithm (GA). The shape of railhead top surface where the wheel contacts nonlinearly was optimized using the hybridized GA method. Comparative study of the optimal result and the search efficiency between the traditional and hybrid GA methods has shown that the hybridized GA provides the optimal shape in fewer computational cycles without losing accuracy. The method will be beneficial to solving complex engineering problems involving contact nonlinearity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic action of putrescine specific amine oxidases acting in tandem with 4-aminobutyraldehyde dehydrogenase is explored as a degradative pathway in Rhodococcus opacus. By limiting the nitrogen source, increased catalytic activity was induced leading to a coordinated response in the oxidative deamination of putrescine to 4-aminobutyraldehyde and subsequent dehydrogenation to 4-aminobutyrate. Isolating the dehydrogenase by ion exchange chromatography and gel filtration revealed that the enzyme acts principally on linear aliphatic aldehydes possessing an amino moiety. Michaelis-Menten kinetic analysis delivered a Michaelis constant (KM=0.014mM) and maximum rate (Vmax=11.2μmol/min/mg) for the conversion of 4-aminobutyraldehyde to 4-aminobutyrate. The dehydrogenase identified by MALDI-TOF mass spectrometric analysis (E value=0.031, 23% coverage) belongs to a functionally related genomic cluster that includes the amine oxidase, suggesting their association in a directed cell response. Key regulatory, stress and transport encoding genes have been identified, along with candidate dehydrogenases and transaminases for the further conversion of 4-aminobutyrate to succinate. Genomic analysis has revealed highly similar metabolic gene clustering among members of Actinobacteria, providing insight into putrescine degradation notably among Micrococcaceae, Rhodococci and Corynebacterium by a pathway that was previously uncharacterised in bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doping is an effective approach that allows for the intrinsic modification of the electrical and chemical properties of nanomaterials. Recently, a graphene and carbon nanotube hybrid structure (GNHS) has been reported, which extends the excellent properties of carbon-based materials to three dimensions. In this paper, we carried out a first-time investigation on the tensile properties of the hybrid structures with different dopants. It is found that with the presence of dopants, the hybrid structures usually exhibit lower yield strength, Young’s modulus, and earlier yielding compared to that of a pristine hybrid structure. For dopant concentrations below 2.5% no significant reduction of Young’s modulus or yield strength could be observed. For all considered samples, the failure is found to initiate at the region where the nanotubes and graphene sheets are connected. After failure, monatomic chains are normally observed around the failure region. Dangling graphene layers without the separation of a residual CNT wall are found to adhere to each other after failure with a distance of about 3.4 Å. This study provides a fundamental understanding of the tensile properties of the doped graphene–nanotube hybrid structures, which will benefit the design and also the applications of graphene-based hybrid materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programmed cell death-associated genes, especially antiapoptosis-related genes have been reported to confer tolerance to a wide range of biotic and abiotic stresses in dicotyledonous plants such as tobacco (Nicotiana tabacum L.) and tomato (Solanum lycopersicum L.). This is the first time the antiapoptotic gene SfIAP was transformed into a monocotyledonous representative: rice (Oryza sativa L.). Transgenic rice strains expressing SfIAP were generated by the Agrobacterium-mediated transformation method and rice embryogenic calli, and assessed for their ability to confer tolerance to salt stress at both the seedling and reproductive stages using a combination of molecular, agronomical, physiological and biochemical techniques. The results show that plants expressing SfIAP have higher salt tolerance levels in comparison to the wild-type and vector controls. By preventing cell death at the onset of salt stress and maintaining the cell membrane’s integrity, SfIAP transgenic rice plants can retain plant water status, ion homeostasis, photosynthetic efficiency and growth to combat salinity successfully.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trichoderma reesei Rut-C30 is used widely as an expression host for various gene products. We have explored cellular effects caused by the expression of a mutant form of cellobiohydrolase I (CBHI), the major secreted protein of T. reesei using biochemical and transcriptomic analyses and confocal laser scanning microscopy. The mutated CBHI was tagged fluorescently with Venus to establish the subcellular location of the fusion protein and its potential association with the proteasome, an organelle assigned for the disposal of misfolded proteins. Expression of the mutant CBHI in the high protein-secreting host Rut-C30 caused physiological changes in the fungal hyphae, affected protein secretion and elicited ER stress. A massive upregulation of UPR- and ERAD-related genes sec61, der1, uba1, bip1, pdi1, prp1, cxl1 and lhs1 was observed by qRT-PCR in the CBHIΔ4-Venus strain with four mutations introduced in the DNA encoding the core domain of CBHI. Further stress was applied to this strain by inhibiting function of the proteasome with MG132 (N-benzoylcarbonyl(Cbz)-Leu-Leu-leucinal). The effect of MG132 was found to be specific to the proteasome-associated genes. There are no earlier reports on the effect of proteasome inhibition on protein quality control in filamentous fungi. Confocal fluorescence microscopy studies suggested that the mutant CBHI accumulated in the ER and colocalized with the fungal proteasome. These results provide an indication that there is a limit to how far T. reesei Rut-C30, already under secretion stress, can be pressed to produce higher protein yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the present study was to examine the extent to which Desire for Control (DFC) interacts with experimental manipulations of demand and control, and the consequences of these interactions on task satisfaction and perceived goal attainment (i.e. task performance and task mastery). It was expected that the proposed stress-buffering effects of control would be evident only for individuals high in DFC. Moreover, it was anticipated that control may have a stress-exacerbating effect for those low in DFC. These hypotheses were tested on a sample of 137 first year psychology students who participated in an in-basket activity under low and high conditions of demand and control. Results revealed that the proposed stress-buffering effect of control was found only for those high in DFC and a stress-exacerbating effect of increased control was evident for those low in DFC on task performance and task mastery perceptions. Future research directions and the implications of these findings to applied settings are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explored how the social context influences the stress-buffering effects of social support on employee adjustment. It was anticipated that the positive relationship between support from colleagues and employee adjustment would be more marked for those strongly identifying with their work team. Furthermore, as part of a three-way interactive effect, it was predicted that high identification would increase the efficacy of coworker support as a buffer of two role stressors (role overload and role ambiguity). One hundred and 55 employees recruited from first-year psychology courses enrolled at two Australian universities were surveyed. Hierarchical multiple regression analyses revealed that the negative main effect of role ambiguity on job satisfaction was significant for those employees with low levels of team identification, whereas high team identifiers were buffered from the deleterious effect of role ambiguity on job satisfaction. There also was a significant interaction between coworker support and team identification. The positive effect of coworker support on job satisfaction was significant for high team identifiers, whereas coworker support was not a source of satisfaction for those employees with low levels of team identification. A three-way interaction emerged among the focal variables in the prediction of psychological well-being, suggesting that the combined benefits of coworker support and team identification under conditions of high demand may be limited and are more likely to be observed when demands are low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large deformation finite element analysis has been carried out to investigate the stress-strain fields ahead of a growing crack for compact tension .a=W D 0:5/ and three-point bend .a=W D 0:1 and 0:5/ specimens under plane stress condition. The crack growth is controlled by the experimental J -integral resistance curves measured by Sun et al. The results indicate that the distributions of opening stress, equivalent stress and equivalent strain ahead of a growing crack are not sensitive to specimen geometry. For both stationary and growing cracks, similar distributions of opening stress and triaxiality can be found along the ligament. During stable crack growth, the crack-tip opening displacement (CTOD) resistance curve and the cohesive fracture energy in the fracture process zone are independent of specimen geometry and may be suitable criteria for characterizing stable crack growth in plane stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on its enticing properties, graphene has been envisioned with applications in the area of electronics, photonics, sensors, bioapplications and others. To facilitate various applications, doping has been frequently used to manipulate the properties of graphene. Despite a number of studies conducted on doped graphene regarding its electrical and chemical properties, the impact of doping on the mechanical properties of graphene has been rarely discussed. A systematic study of the vibrational properties of graphene doped with nitrogen and boron is performed by means of a molecular dynamics simulation. The influence from different density or species of dopants has been assessed. It is found that the impacts on the quality factor, Q, resulting from different densities of dopants vary greatly, while the influence on the resonance frequency is insignificant. The reduction of the resonance frequency caused by doping with boron only is larger than the reduction caused by doping with both boron and nitrogen. This study gives a fundamental understanding of the resonance of graphene with different dopants, which may benefit their application as resonators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endoplasmic reticulum (ER) is the central organelle in the eukaryotic secretory pathway. The ER functions in protein synthesis and maturation and is crucial for proper maintenance of cellular homeostasis and adaptation to adverse environments. Acting as a cellular sentinel, the ER is exquisitely sensitive to changing environments principally via the ER quality control machinery. When perturbed, ER-stress triggers a tightly regulated and highly conserved, signal transduction pathway known as the unfolded protein response (UPR) that prevents the dangerous accumulation of unfolded/misfolded proteins. In situations where excessive UPR activity surpasses threshold levels, cells deteriorate and eventually trigger programmed cell death (PCD) as a way for the organism to cope with dysfunctional or toxic signals. The programmed cell death that results from excessive ER stress in mammalian systems contributes to several important diseases including hypoxia, neurodegeneration, and diabetes. Importantly, hallmark features and markers of cell death that are associated with ER stress in mammals are also found in plants. In particular, there is a common, conserved set of chaperones that modulate ER cell death signaling. Here we review the elements of plant cell death responses to ER stress and note that an increasing number of plant-pathogen interactions are being identified in which the host ER is targeted by plant pathogens to establish compatibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doping as one of the popular methods to manipulate the properties of nanomaterials has received extensive application in deriving different types of graphene derivates, while the understanding of the resonance properties of dopant graphene is still lacking in literature. Based on the large-scale molecular dynamics simulation, reactive empirical bond order potential, as well as the tersoff potential, the resonance properties of N-doped graphene were studied. The studied samples were established according to previous experiments with the N atom’s percentage ranging from 0.43%-2.98%, including three types of N dopant locations, i.e., graphitic N, pyrrolic N and pyridinic N. It is found that different percentages of N-dopant exert different influence to the resonance properties of the graphene, while the amount of N-dopant is not the only factor that determines its impact. For all the considered cases, a relative large percentage of N-dopant (2.98% graphitic N-dopant) is observed to introduce significant influence to the profile of the external energy, and thus lead to an extremely low Q-factor comparing with that of the pristine graphene. The most striking finding is that, the natural frequency of the defective graphene with N-dopant appears uniformly larger than that of the pristine defective graphene. While for the perfect graphene, the N-dopant shows less influence to its natural frequency. This study will enrich the current understanding of the influence of dopants on graphene, which will eventually shed lights on the design of different molecules-doped graphene sheet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of appropriate nursery environments will maximize gain from selection for yield of wheat (Triticum aestivum L.) in the target population of environments of a breeding program. The objective of this study was to investigate how well-irrigated (low-stress) nursery environments predict yield of lines in target environments that varied in degree of water limitation. Fifteen lines were sampled from the preliminary yield evaluation stage of the Queensland wheat breeding program and tested in 26 trials under on-farm conditions (Target Environments) across nine years (1985 to 1993) and also in 27 trials conducted at three research stations (Nursery Environments) in three years (1987 to 1989). The nursery environments were structured to impose different levels of water and nitrogen (N) limitation, whereas the target environments represented a random sample of on-farm conditions from the target population of environments. Indirect selection and pattern analysis methods were used to investigate selection for yield in the nursery environments and gain from selection in the target environments. Yield under low-stress nursery conditions was an effective predictor of yield under similar low-stress target environments (r = 0.89, P < 0.01). However, the value of the low-stress nursery as a predictor of yield in the water-limited target environments decreased with increasing water stress (moderate stress r = 0.53, P < 0.05, to r = 0.38, P > 0.05; severe stress r = -0.08, P > 0.05). Yield in the stress nurseries was a poor predictor of yield in the target environments. Until there is a clear understanding of the physiological-genetic basis of variation for adaptation of wheat to the water-limited environments in Queensland, yield improvement can best be achieved by selection for a combination of yield potential in an irrigated low-stress nursery and yield in on-farm trials that sample the range of water-limited environments of the target population of environments.