935 resultados para Nitrogen fixing algae


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The aim of this study was to assess cyclic fatigue resistance in rotary nickel-titanium instruments submitted to nitrogen ion implantation by using a custom-made cyclic fatigue testing apparatus. Methods: Thirty K3 files, size #25, taper 0.04, were divided into 3 experimental groups as follows: group A, 12 files exposed to nitrogen ion implantation at a dose of 2.5 x 10(17) ions/cm(2), accelerating voltage of 200 kV, currents of 1 mu A/cm(2), 130 degrees C temperature, and vacuum conditions of 10 x 10(-6) torr for 6 hours; group B, 12 nonimplanted files; and group C, 6 files submitted to thermal annealing for 6 hours at 130 degrees C. One extra file was used for process control. All files were submitted to a cyclic fatigue test that was performed with an apparatus that allowed the instruments to rotate freely, simulating rotary instrumentation of a curved canal (40-degree, 5-mm radius curve). An electric motor handpiece was used with a contra-angle of 16:1 at an operating speed of 300 rpm and a torque of 2 N-cm. Time to failure was recorded with a stopwatch in seconds and subsequently converted to number of cycles to fracture. Data were analyzed with the Student t test (P < .05). Results: Ion-implanted instruments reached significantly higher cycle numbers before fracture (mean, 510 cycles) when compared with annealed (mean, 428 cycles) and nonimplanted files (mean, 381 cycles). Conclusions: Our results showed that nitrogen ion implantation improves cyclic fatigue resistance in rotary nickel-titanium instruments. Industrial implementation. of this surface modification technique would produce rotary nickel-titanium instruments with a longer working life. (J Endod 2010;36:1183-1186)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guadalupian reefs occur locally in Guangxi, Guizhou, Yunnan and Western Zhejiang, South China. Two types of Guadalupian reefs can be recognized, one is developed in carbonate platforms, e.g. those in the juncture areas of Guangxi, Yunnan and Guizhou; the other occurs in a littoral clastic shelf. The Lengwu reef in Western Zhejiang is a representative of the latter type, which is a major topic of this paper. Lengwu algae-sponge reef, more than one hundred meters in thickness, are composed mainly of sponges, hydrozoans, algae, bryozoans, microbes and lime mud. Reef limestones sit on the mudstone interbedded with fine sandstone of the proximal prodelta facies and are overlain by coarse clasts of the delta front sediments. Lengwu reef displays a lens-shaped relief, dipping and thinning from the reef core, which is remarkably different from the surrounding sediments, showing a protruding relief. Sponges and microbe/algae form bafflestone, bindstone and framestone of the reef core facies. Fore-reef facies is characterized by lithoclastic rudstone and bioclastic packstone. Reef limestone sequence is composed of three cycles and controlled by sea level changes and sediment influx. Such reef is unique among the Guadalupian reefs in South China, but seems similar in some aspects to lwaizaki reef limestones of south Kitakami in Japan. Algae and microbes growing around sponges to form rigid structure in Lengwu reef are a typical feature, which is distinctly different to Guadalupian reefs in a stable platform facies of Guizhou, Yunnan and Guangxi, South China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of nitrifiable nitrogen contained in wastewater by combining the existing respirometric and titrimetric principles is reported. During an in-sensor-experiment using nitrifying activated sludge. both the dissolved oxygen (DO) and pH in the mixed liquor were measured, and the FH was controlled at a set-point through titration of base or acid. A combination of the oxygen uptake rate (OUR), which was obtained from the measured DO signal, and the titration data allowed calculation of the nitrifiable nitrogen and the short-term biological oxygen demand (BOD) of the wastewater sample that was initially added to the sludge. The calculation was based solely on stoichiometric relationships. The approach was preliminarily tested with two types of wastewaters using a prototype sensor. Good correlation was obtained. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three Australian-endemic species comprising the genus Aresehougia have been examined to determine the structure of their nonfibrillar wall components. The polysaccharide extracted from the most widely distributed species, A. congesta (Turner) J. Agardh, was shown by compositional analyses, Fourier transform infrared (FTIR) spectroscopy, linkage analysis, and C-13-NMR spectroscopy to be a carrageenan composed predominantly of the repeating disaccharides 6'-O-methylcarrabiose 2,4'-disulfate, carrabiose 2,4-disulfate (the repeating unit of L-carrageenan), 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate, and 6'-O-methylcarrabiose 2-sulfate. The carrageenan also contained small amounts of 4-linked Galp residues, some bearing methyl ether substitution at O-3 and some possibly bearing sulfate ester and/or glycosyl substitutions at O-3. The A. congesta carrageenan had unique rheological properties, its gels having some similarities to those of commercial iota -carrageenan but with the viscosity of commercial lambda -carrageenan. Polysaccharides from A. ligulata Harvey ex J. Agardh and A. stuartii Harvey were shown by constituent sugar and FTIR analyses to be sulfated galactans rich in mono-O-methylgalactose. The carrageenan structures of Areschougia spp. were consistent with those of the genera Rhabdonia, Erythroclonium, and Austroclonium, the other genera constituting the family Areschougiaceae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable carbon and nitrogen isotope signatures (delta C-13 and delta N-15) of Cannabis sativa were assessed for their usefulness to trace seized Cannabis leaves to the country of origin and to source crops by determining how isotope signatures relate to plant growth conditions. The isotopic composition of Cannabis examined here covered nearly the entire range of values reported for terrestrial C-3 plants. The delta C-13 values of Cannabis from Australia, Papua New Guinea and Thailand ranged from -36 to -25 parts per thousand, and delta N-15 values ranged from -1.0 to 15.8 parts per thousand. The stable isotope content did not allow differentiation between Cannabis originating from the three countries, but delta C-13 values of plantation-grown Cannabis differed between well-watered plants (average delta C-13 of -30.0 parts per thousand) and plants that had received little irrigation (average delta C-13 of -26.4 parts per thousand). Cannabis grown under controlled conditions had delta C-13 values of -32.6 and -30.6 parts per thousand with high and low water supply, respectively. These results indicate that water availability determines leaf C-13 in plants grown under similar conditions of light, temperature and air humidity. The delta C-13 values also distinguished between indoor- and outdoor-grown Cannabis; indoor- grown plants had overall more negative delta C-13 values (average -31.8 parts per thousand) than outdoor-grown plants (average -27.9 parts per thousand). Contributing to the strong C-13-depletion of indoor- grown plants may be high relative humidity, poor ventilation and recycling of C-13-depleted respired CO2. Mineral fertilizers had mostly lower delta N-15 values (-0.2 to 2.2 parts per thousand) than manure-based fertilizers (7.6 to 22.7 parts per thousand). It was possible to link delta N-15 values of fertilizers associated with a crop site to soil and plant delta N-15 values. The strong relationship between soil, fertilizer, and plant delta N-15 suggests that Cannabis delta N-15 is determined by the isotopic composition of the nitrogen source. The distinct delta N-15 values measured in Cannabis crops make delta N-15 an excellent tool for matching seized Cannabis with a source crop. A case study is presented that demonstrates how delta C-13 and delta N-15 values can be used as a forensic tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef(One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 muM NH4+; 2.3 muM PO4-3) rapidly declined, reaching near-background levels (mean = 0.9 muM NH4+; 0.5 muM PO4-3) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 muM NH4+; 5.1 muM PO4-3 declining to means of 11.3 muM NH4+ and 2.4 muM PO4-3 at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments,were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients, ENCORE has shown that reef organisms and processes investigated ill situ were impacted by elevated nutrients. Impacts mere dependent on dose level, whether nitrogen and/or phosphorus mere elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment mere visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs, inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies. (C) 2001 Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to determine whether the addition of iron alone or in combination with nitrate affects growth and photosynthesis of the scleractinian coral, Stylophora pistillata, and its symbiotic dinoflagellates. For this purpose, we used three series of two tanks for a 3-week enrichment with iron (Fe), nitrate (N) and nitrate + iron (NFe). Two other tanks were kept as a control (C). Stock solutions of FeCl3 and NaNO3 were diluted to final concentrations of 6 nM Fe and 2 muM N and continuously pumped from batch tanks into the experimental tanks with a peristaltic pump. Results obtained showed that iron addition induced a significant increase in the areal density of zooxanthellae (ANOVA, p = 0.0013; change from 6.3 +/- 0.7 x 10(5) in the control to 8.5 +/- 0.6 x 10(5) with iron). Maximal gross photosynthetic rates normalized per surface area also significantly increased following iron enrichment (ANOVA, p = 0.02; change from 1.23 +/- 0.08 for the control colonies to 1.81 +/- 0.24 mu mol O-2 cm(-2) h(-1) for the iron-enriched colonies). There was, however, no significant difference in the photosynthesis normalized on a per cell basis. Nitrate enrichment alone (2 muM) did not significantly change the zooxanthellae density or the rates of photosynthesis. Nutrient addition (both iron and nitrogen) increased the cell-specific density of the algae (CSD) compared to the control (G-test, p = 0.3 x 10(-9)), with an increase in the number of doublets and triplets. CSD was equal to 1.70 +/- 0.04 in the Fe-enriched colonies, 1.54 +/- 0.12 in the N- and NFe-enriched colonies and 1.37 +/- 0.02 in the control. Growth rates measured after 3 weeks in colonies enriched with Fe, N and NFe were 23%, 34% and 40% lower than those obtained in control colonies (ANOVA. p = 0.011). (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon isotope composition (delta C-13), oxygen isotope composition (delta O-18), and nitrogen concentration (N-mass) of branchlet tissue at two canopy positions were assessed for glasshouse seedlings and 9-year-old hoop pine (Araucaria cunninghamii Ait. ex D. Don) trees from 22 open-pollinated families grown in 5 blocks of a progeny test at a water-limited and nitrogen-deficient site in southeastern Queensland, Australia. Significant variations in canopy delta C-13, delta O-18, and N-mass existed among the 9-year-old hoop pine families, with a heritability estimate of 0.72 for branchlet delta C-13 from the upper inner canopy position. There was significant variation in canopy delta C-13 of glasshouse seedlings between canopy positions and among the families, with a heritability estimate of 0.66. The canopy delta C-13 was positively related to canopy N-mass only for the upper outer crown in the field (R = 0.62, p < 0.001). Phenotypic correlations existed between tree height and canopy delta C-13 (R = 0.37-0.41, p < 0.001). Strong correlations were found between family canopy delta C-13 at this site and those at a wetter site and between field canopy delta C-13 and glasshouse seedling delta C-13. The mechanisms of the variation in canopy delta C-13 are discussed in relation to canopy photosynthetic capacity as reflected in the N-mass and stomatal conductance as indexed by canopy delta O-18.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a study in the wet tropics of Queensland on the fate of urea applied to a dry or wet soil surface under banana plants. The transformations of urea were followed in cylindrical microplots (10.3 cm diameter x 23 cm long), a nitrogen (N) balance was conducted in macroplots (3.85 m x 2.0 m) with N-15 labelled urea, and ammonia volatilization was determined with a mass balance micrometeorological method. Most of the urea was hydrolysed within 4 days irrespective of whether the urea was applied onto dry or wet soil. The nitrification rate was slow at the beginning when the soil was dry, but increased greatly after small amounts of rain; in the 9 days after rain 20% of the N applied was converted to nitrate. In the 40 days between urea application and harvesting, the macroplots the banana plants absorbed only 15% of the applied N; at harvest the largest amounts were found in the leaves (3.4%), pseudostem (3.3%) and fruit (2.8%). Only 1% of the applied N was present in the roots. Sixty percent of the applied N was recovered in the soil and 25% was lost from the plant-soil system by either ammonia volatilization, leaching or denitrification. Direct measurements of ammonia volatilization showed that when urea was applied to dry soil, and only small amounts of rain were received, little ammonia was lost (3.2% of applied N). In contrast, when urea was applied onto wet soil, urea hydrolysis occurred immediately, ammonia was volatilized on day zero, and 17.2% of the applied N was lost by the ninth day after that application. In the latter study, although rain fell every day, the extensive canopy of banana plants reduced the rainfall reaching the fertilized area under the bananas to less than half. Thus even though 90 mm of rain fell during the volatilization study, the fertilized area did not receive sufficient water to wash the urea into the soil and prevent ammonia loss. Losses by leaching and denitrification combined amounted to 5% of the applied N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a study in the wet tropics of Queensland on the fate of urea applied to a dairy pasture in the absence of grazing animals. A nitrogen balance was conducted in cylindrical plots with N-15-labelled urea, and ammonia volatilisation was determined using a mass balance micrometeorological method. The pasture plants took up 42% of the applied nitrogen in the 98 days between fertiliser application and harvest. At harvest 18% of the applied nitrogen was found in the soil, and 40% was lost from the plant-soil system. The micrometeorological study showed that 20% of the unrecovered nitrogen was lost by ammonia volatilisation. As there was no evidence for leaching or runoff losses it was concluded that the remaining 20% of the applied nitrogen was lost by denitrification. It is evident from these results that fertiliser nitrogen is not being used efficiently on dairy pastures, and that practices need to be changed to conserve fertiliser nitrogen and reduce contamination of the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crossbred ewes, weighing 30-40 kg, were assigned to three groups of six animals. One group of sheep was fed chopped oat hay (control), the second group was fed the control diet plus 30 g per head per day spray dried residue from the fermentation of molasses and the third group was fed the control diet plus 30 g per head per day of a non-protein nitrogen/mineral mix. Voluntary feed intake, digestibility of DM, OM and nitrogen, nitrogen balance and microbial nitrogen flow to the intestines were significantly increased by supplementation but efficiency of microbial protein production was not affected. (C) 2001 Elsevier Science BN. All rights reserved,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retention of green leaf area in grain sorghum under post-anthesis drought, known as stay-green, is associated with greater biomass production, lodging resistance and yield. The stay-green phenomenon can be examined at a cell, leaf, or whole plant level. At a cell level, the retention of chloroplast proteins such as LHCP2, OEC33 and Rubisco until late in senescence has been reported in sorghum containing the KS19 source of stay-green, indicating that photosynthesis may be maintained for longer during senescence in these genotypes. At a leaf level, longevity of photosynthetic apparatus is intimately related to nitrogen (N) status. At a whole plant level, stay-green can be viewed as a consequence of the balance between N demand by the grain and N supply during grain filling. To examine some of these concepts, nine hybrids varying in the B35 and KS19 sources of stay-green were grown under a postanthesis water deficit. Genotypic variation in delayed onset and reduced rate of leaf senescence were explained by differences in specific leaf nitrogen (SLN) and N uptake during grain filling. Matching N supply from age-related senescence and N uptake during grain tilling with grain N demand found that the shortfall in N supply for grain filling was greater in the senescent than stay-green hybrids, resulting in more accelerated leaf senescence in the former. We hypothesise that increased N uptake by stay-green hybrids is a result of greater biomass accumulation during grain filling in response to increased sink demand (higher grain numbers) which, in turn, is the result of increased radiation use efficiency and transpiration efficiency due to higher SLN. Delayed leaf senescence resulting from higher SLN should, in turn, allow snore carbon and nitrogen to be allocated to the roots of stay-green hybrids during grain filling, thereby maintaining a greater capacity to extract N from the soil compared with senescent hybrids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of nitrate, ammonium, and culture medium pH on shoot organogenesis in Nicotiana tabacum zz100 leaf discs was examined. The nitrogen composition of a basal liquid shoot induction medium (SIM) containing 39.4 mM NO3- and 20.6 mM NH4+ was altered whilst maintaining the overall ionic balance with Na+ and Cl- ions. Omission of total nitrogen and nitrate, but not ammonium, from SIM prevented the initiation and formation of shoots. When nitrate was used as the sole source of nitrogen, a high frequency of explants initiated and produced leafy shoots. However, the numbers of shoots produced were significantly fewer than the control SIM. Buffering nitrate-only media with the organic acid 2[N-morpholinol]thanesulphonic acid (MES) could not compensate for the omission of ammonium. Ammonium used as the sole source of nitrogen appeared to have a negative effect on explant growth and morphogenesis, with a significant lowering of media pH. Buffering ammonium-only media with MES stabilized pH and allowed a low frequency of explants to initiate shoot meristems. However, no further differentiation into leafy shoots was observed. The amount of available nitrogen appears to be less important than the ratio between nitrate and ammonium. Shoot formation was achieved with a wide range of ratios, but media containing 40 mM nitrate and 20 mM ammonium (70:30) produced the greatest number of shoots per explant. Results from this study indicate a synergistic effect between ammonium and nitrate on shoot organogenesis independent of culture medium pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of shoot water status in mediating the decline in leaf elongation rate of nitrogen (N)-deprived barley plants was assessed. Plants were grown at two levels of N supply, with or without the application of pneumatic pressure to the roots. Applying enough pressure (balancing pressure) to keep xylem sap continuously bleeding from the cut surface of a leaf allowed the plants to remain at full turgor throughout the experiments. Plants from which N was withheld required a greater balancing pressure during both day and night. This difference in balancing pressure was greater at high (2.0 kPa) than low (1.2 kPa) atmospheric vapour pressure deficit (VPD). Pressurizing the roots did not prevent the decline in leaf elongation rate induced by withholding N at either high or low VPD. Thus low shoot water status did not limit leaf growth of N-deprived plants.