750 resultados para Neuro-fuzzy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geração e Simplificação da Base de Conhecimento de um Sistema Híbrido Fuzzy- Genético propõe uma metodologia para o desenvolvimento da base de conhecimento de sistemas fuzzy, fundamentada em técnicas de computação evolucionária. Os sistemas fuzzy evoluídos são avaliados segundo dois critérios distintos: desempenho e interpretabilidade. Uma metodologia para a análise de problemas multiobjetivo utilizando a Lógica Fuzzy foi também desenvolvida para esse fim e incorporada ao processo de avaliação dos AGs. Os sistemas fuzzy evoluídos foram avaliados através de simulações computacionais e os resultados obtidos foram comparados com os obtidos por outros métodos em diferentes tipos de aplicações. O uso da metodologia proposta demonstrou que os sistemas fuzzy evoluídos possuem um bom desempenho aliado a uma boa interpretabilidade da sua base de conhecimento, tornando viável a sua utilização no projeto de sistemas reais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta dissertaçãoo investiga a utilização de Particle Swarm Optimization (PSO) para a obtenção automática de sistemas fuzzy do tipo Mamdani, tendo como insumo apenas as definições das variáveis do problema, seus domínios e a função objetivo. Neste trabalho utilizam-se algumas técnicas conhecidas na tentativa de minimizar a obtenção de sistemas fuzzy que não sejam coerentes. As principais técnicas usadas são o método de Wang e Mendell, chamado de WM, para auxiliar na obtenção de regras, e os conceitos de clusterização para obtenção das funções de pertinência. Na função de avaliação proposta, considera-se não somente a acurácia do sistema fuzzy, através da medida do erro, mas também a sua interpretabilidade, através da medida da compacidade, que consiste da quantidade de regras e funções membro, da distinguibilidade, que permite evitar que as funções membro não se confundam, e da completude, que permite avaliar que as funções membro abranjam o máximo do domínio. O propósito deste trabalho consiste no desenvolvimento de um algoritmo baseado em PSO, cuja função de avaliação congregue todos esses objetivos. Com parâmetros bem definidos, o algoritmo pode ser utilizado em diversos tipos de problemas sem qualquer alteração, tornando totalmente automática a obtenção de sistemas fuzzy. Com este intuito, o algoritmo proposto é testado utilizando alguns problemas pré-selecionados, que foram classificados em dois grupos, com base no tipo de função: contínua ou discreta. Nos testes com funções contínuas, são utilizados sistemas tridimensionais, com duas variáveis de entrada e uma de saída, enquanto nos testes com funções discretas são utilizados problemas de classificação, sendo um com quatro variáveis e outro com seis variáveis de entrada. Os resultados gerados pelo algoritmo proposto são comparados com aqueles obtidos em outros trabalhos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta dissertação apresenta um sistema de indução de classificadores fuzzy. Ao invés de utilizar a abordagem tradicional de sistemas fuzzy baseados em regras, foi utilizado o modelo de Árvore de Padrões Fuzzy(APF), que é um modelo hierárquico, com uma estrutura baseada em árvores que possuem como nós internos operadores lógicos fuzzy e as folhas são compostas pela associação de termos fuzzy com os atributos de entrada. O classificador foi obtido sintetizando uma árvore para cada classe, esta árvore será uma descrição lógica da classe o que permite analisar e interpretar como é feita a classificação. O método de aprendizado originalmente concebido para a APF foi substituído pela Programação Genética Cartesiana com o intuito de explorar melhor o espaço de busca. O classificador APF foi comparado com as Máquinas de Vetores de Suporte, K-Vizinhos mais próximos, florestas aleatórias e outros métodos Fuzzy-Genéticos em diversas bases de dados do UCI Machine Learning Repository e observou-se que o classificador APF apresenta resultados competitivos. Ele também foi comparado com o método de aprendizado original e obteve resultados comparáveis com árvores mais compactas e com um menor número de avaliações.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A extração de regras de associação (ARM - Association Rule Mining) de dados quantitativos tem sido pesquisa de grande interesse na área de mineração de dados. Com o crescente aumento das bases de dados, há um grande investimento na área de pesquisa na criação de algoritmos para melhorar o desempenho relacionado a quantidade de regras, sua relevância e a performance computacional. O algoritmo APRIORI, tradicionalmente usado na extração de regras de associação, foi criado originalmente para trabalhar com atributos categóricos. Geralmente, para usá-lo com atributos contínuos, ou quantitativos, é necessário transformar os atributos contínuos, discretizando-os e, portanto, criando categorias a partir dos intervalos discretos. Os métodos mais tradicionais de discretização produzem intervalos com fronteiras sharp, que podem subestimar ou superestimar elementos próximos dos limites das partições, e portanto levar a uma representação imprecisa de semântica. Uma maneira de tratar este problema é criar partições soft, com limites suavizados. Neste trabalho é utilizada uma partição fuzzy das variáveis contínuas, que baseia-se na teoria dos conjuntos fuzzy e transforma os atributos quantitativos em partições de termos linguísticos. Os algoritmos de mineração de regras de associação fuzzy (FARM - Fuzzy Association Rule Mining) trabalham com este princípio e, neste trabalho, o algoritmo FUZZYAPRIORI, que pertence a esta categoria, é utilizado. As regras extraídas são expressas em termos linguísticos, o que é mais natural e interpretável pelo raciocício humano. Os algoritmos APRIORI tradicional e FUZZYAPRIORI são comparado, através de classificadores associativos, baseados em regras extraídas por estes algoritmos. Estes classificadores foram aplicados em uma base de dados relativa a registros de conexões TCP/IP que destina-se à criação de um Sistema de Detecção de Intrusos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta dissertação testa e compara dois tipos de modelagem para previsão de uma mesma série temporal. Foi observada uma série temporal de distribuição de energia elétrica e, como estudo de caso, optou-se pela região metropolitana do Estado da Bahia. Foram testadas as combinações de três variáveis exógenas em cada modelo: a quantidade de clientes ligados na rede de distribuição de energia elétrica, a temperatura ambiente e a precipitação de chuvas. O modelo linear de previsão de séries temporais utilizado foi um SARIMAX. A modelagem de inteligência computacional utilizada para a previsão da série temporal foi um sistema de Inferência Fuzzy. Na busca de um melhor desempenho, foram feitos testes de quais variáveis exógenas melhor influenciam no comportamento da energia distribuída em cada modelo. Segundo a avaliação dos testes, o sistema Fuzzy de previsão foi o que obteve o menor erro. Porém dentre os menores erros, os resultados dos testes também indicaram diferentes variáveis exógenas para cada modelo de previsão.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A partir de 2011, ocorreram e ainda ocorrerão eventos de grande repercussão para a cidade do Rio de Janeiro, como a conferência Rio+20 das Nações Unidas e eventos esportivos de grande importância mundial (Copa do Mundo de Futebol, Olimpíadas e Paraolimpíadas). Estes acontecimentos possibilitam a atração de recursos financeiros para a cidade, assim como a geração de empregos, melhorias de infraestrutura e valorização imobiliária, tanto territorial quanto predial. Ao optar por um imóvel residencial em determinado bairro, não se avalia apenas o imóvel, mas também as facilidades urbanas disponíveis na localidade. Neste contexto, foi possível definir uma interpretação qualitativa linguística inerente aos bairros da cidade do Rio de Janeiro, integrando-se três técnicas de Inteligência Computacional para a avaliação de benefícios: Lógica Fuzzy, Máquina de Vetores Suporte e Algoritmos Genéticos. A base de dados foi construída com informações da web e institutos governamentais, evidenciando o custo de imóveis residenciais, benefícios e fragilidades dos bairros da cidade. Implementou-se inicialmente a Lógica Fuzzy como um modelo não supervisionado de agrupamento através das Regras Elipsoidais pelo Princípio de Extensão com o uso da Distância de Mahalanobis, configurando-se de forma inferencial os grupos de designação linguística (Bom, Regular e Ruim) de acordo com doze características urbanas. A partir desta discriminação, foi tangível o uso da Máquina de Vetores Suporte integrado aos Algoritmos Genéticos como um método supervisionado, com o fim de buscar/selecionar o menor subconjunto das variáveis presentes no agrupamento que melhor classifique os bairros (Princípio da Parcimônia). A análise das taxas de erro possibilitou a escolha do melhor modelo de classificação com redução do espaço de variáveis, resultando em um subconjunto que contém informações sobre: IDH, quantidade de linhas de ônibus, instituições de ensino, valor m médio, espaços ao ar livre, locais de entretenimento e crimes. A modelagem que combinou as três técnicas de Inteligência Computacional hierarquizou os bairros do Rio de Janeiro com taxas de erros aceitáveis, colaborando na tomada de decisão para a compra e venda de imóveis residenciais. Quando se trata de transporte público na cidade em questão, foi possível perceber que a malha rodoviária ainda é a prioritária

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Product innovativeness is a primary contingent factor to be addressed for the development of flexible management for the front-end. However, due to complexity of this early phase of the innovation process, the definition of which attributes to customise is critical to support a contingent approach. Therefore, this study investigates front-end attributes that need to be customised to permit effective management for different degrees of innovation. To accomplish this aim, a literature review and five case studies were performed. The findings highlighted the front-end strategic and operational levels as factors influencing the front-end attributes related to product innovativeness. In conclusion, this study suggests that two front-end attributes should be customised: development activities and decision-making approach. Copyright © 2011 Inderscience Enterprises Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nervous system implements a networked control system in which the plants take the form of limbs, the controller is the brain, and neurons form the communication channels. Unlike standard networked control architectures, there is no periodic sampling, and the fundamental units of communication contain little numerical information. This paper describes a novel communication channel, modeled after spiking neurons, in which the transmitter integrates an input signal and sends out a spike when the integral reaches a threshold value. The reciever then filters the sequence of spikes to approximately reconstruct the input signal. It is shown that for appropriate choices of channel parameters, stable feedback control over these spiking channels is possible. Furthermore, good tracking performance can be achieved. The data rate of the channel increases linearly with the size of the inputs. Thus, when placed in a feedback loop, small loop gains imply a low data rate. ©2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

以水色、透明度、五日生化需氧量、总氮、总磷、悬浮物等感官的和生物学的6个参数为依据,用fuzzy聚类分析方法对武汉东湖生态系统的污染状况进行了分析研究,所获得的结果与实际情况相符。同时也简单地介绍和讨论了用于生态学的fuzzy聚类分析的一般方法。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly sensitive biosensor for detection of acetylcholine (ACh) and competitive acetylcholinesterase (AChE) inhibitor, eserine, is investigated. Peculiar microelectronic configuration of an ion-sensitive field-effect transistor (ISFET) in addition to a right choice of the pH-transducing nanolayers allows recording a response of the enzyme-modified ISFET (EnFET) to a wide range of ACh concentrations. We demonstrate a remarkable improvement of at least three orders of magnitude in dose response to ACh. Described bioelectronic system reveals clear response, when the catalytic activity of the immobilized AChE is inhibited in a reversible manner by eserine, competitive inhibitor of AChE. ©2007 IEEE.