783 resultados para Neural Network-models
Resumo:
In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease." The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.
Resumo:
A decision support system based on a neural network approach is proposed to advise on insulin regime and dose adjustment for type 1 diabetes patients.
Resumo:
Simbrain is a visually-oriented framework for building and analyzing neural networks. It emphasizes the analysis of networks which control agents embedded in virtual environments, and visualization of the structures which occur in the high dimensional state spaces of these networks. The program was originally intended to facilitate analysis of representational processes in embodied agents, however it is also well suited to teaching neural networks concepts to a broader audience than is traditional for neural networks courses. Simbrain was used to teach a course at a new university, UC Merced, in its inaugural year. Experiences from the course and sample lessons are provided.
Resumo:
BACKGROUND The diagnostic performance of biochemical scores and artificial neural network models for portal hypertension and cirrhosis is not well established. AIMS To assess diagnostic accuracy of six serum scores, artificial neural networks and liver stiffness measured by transient elastography, for diagnosing cirrhosis, clinically significant portal hypertension and oesophageal varices. METHODS 202 consecutive compensated patients requiring liver biopsy and hepatic venous pressure gradient measurement were included. Several serum tests (alone and combined into scores) and liver stiffness were measured. Artificial neural networks containing or not liver stiffness as input variable were also created. RESULTS The best non-invasive method for diagnosing cirrhosis, portal hypertension and oesophageal varices was liver stiffness (C-statistics=0.93, 0.94, and 0.90, respectively). Among serum tests/scores the best for diagnosing cirrhosis and portal hypertension and oesophageal varices were, respectively, Fibrosis-4, and Lok score. Artificial neural networks including liver stiffness had high diagnostic performance for cirrhosis, portal hypertension and oesophageal varices (accuracy>80%), but were not statistically superior to liver stiffness alone. CONCLUSIONS Liver stiffness was the best non-invasive method to assess the presence of cirrhosis, portal hypertension and oesophageal varices. The use of artificial neural networks integrating different non-invasive tests did not increase the diagnostic accuracy of liver stiffness alone.
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network
Resumo:
Automated tissue characterization is one of the most crucial components of a computer aided diagnosis (CAD) system for interstitial lung diseases (ILDs). Although much research has been conducted in this field, the problem remains challenging. Deep learning techniques have recently achieved impressive results in a variety of computer vision problems, raising expectations that they might be applied in other domains, such as medical image analysis. In this paper, we propose and evaluate a convolutional neural network (CNN), designed for the classification of ILD patterns. The proposed network consists of 5 convolutional layers with 2×2 kernels and LeakyReLU activations, followed by average pooling with size equal to the size of the final feature maps and three dense layers. The last dense layer has 7 outputs, equivalent to the classes considered: healthy, ground glass opacity (GGO), micronodules, consolidation, reticulation, honeycombing and a combination of GGO/reticulation. To train and evaluate the CNN, we used a dataset of 14696 image patches, derived by 120 CT scans from different scanners and hospitals. To the best of our knowledge, this is the first deep CNN designed for the specific problem. A comparative analysis proved the effectiveness of the proposed CNN against previous methods in a challenging dataset. The classification performance (~85.5%) demonstrated the potential of CNNs in analyzing lung patterns. Future work includes, extending the CNN to three-dimensional data provided by CT volume scans and integrating the proposed method into a CAD system that aims to provide differential diagnosis for ILDs as a supportive tool for radiologists.
Resumo:
This paper proposes the optimization relaxation approach based on the analogue Hopfield Neural Network (HNN) for cluster refinement of pre-classified Polarimetric Synthetic Aperture Radar (PolSAR) image data. We consider the initial classification provided by the maximum-likelihood classifier based on the complex Wishart distribution, which is then supplied to the HNN optimization approach. The goal is to improve the classification results obtained by the Wishart approach. The classification improvement is verified by computing a cluster separability coefficient and a measure of homogeneity within the clusters. During the HNN optimization process, for each iteration and for each pixel, two consistency coefficients are computed, taking into account two types of relations between the pixel under consideration and its corresponding neighbors. Based on these coefficients and on the information coming from the pixel itself, the pixel under study is re-classified. Different experiments are carried out to verify that the proposed approach outperforms other strategies, achieving the best results in terms of separability and a trade-off with the homogeneity preserving relevant structures in the image. The performance is also measured in terms of computational central processing unit (CPU) times.
Neural network controller for active demand side management with PV energy in the residential sector
Resumo:
In this paper, we describe the development of a control system for Demand-Side Management in the residential sector with Distributed Generation. The electrical system under study incorporates local PV energy generation, an electricity storage system, connection to the grid and a home automation system. The distributed control system is composed of two modules: a scheduler and a coordinator, both implemented with neural networks. The control system enhances the local energy performance, scheduling the tasks demanded by the user and maximizing the use of local generation.
Resumo:
Over the last ten years, Salamanca has been considered among the most polluted cities in México. This paper presents a Self-Organizing Maps (SOM) Neural Network application to classify pollution data and automatize the air pollution level determination for Sulphur Dioxide (SO2) in Salamanca. Meteorological parameters are well known to be important factors contributing to air quality estimation and prediction. In order to observe the behavior and clarify the influence of wind parameters on the SO2 concentrations a SOM Neural Network have been implemented along a year. The main advantages of the SOM is that it allows to integrate data from different sensors and provide readily interpretation results. Especially, it is powerful mapping and classification tool, which others information in an easier way and facilitates the task of establishing an order of priority between the distinguished groups of concentrations depending on their need for further research or remediation actions in subsequent management steps. The results show a significative correlation between pollutant concentrations and some environmental variables.
Resumo:
This work evaluates a spline-based smoothing method applied to the output of a glucose predictor. Methods:Our on-line prediction algorithm is based on a neural network model (NNM). We trained/validated the NNM with a prediction horizon of 30 minutes using 39/54 profiles of patients monitored with the Guardian® Real-Time continuous glucose monitoring system The NNM output is smoothed by fitting a causal cubic spline. The assessment parameters are the error (RMSE), mean delay (MD) and the high-frequency noise (HFCrms). The HFCrms is the root-mean-square values of the high-frequency components isolated with a zero-delay non-causal filter. HFCrms is 2.90±1.37 (mg/dl) for the original profiles.
Resumo:
Seepage flow measurement is an important behavior indicator when providing information about dam performance. The main objective of this study is to analyze seepage by means of an artificial neural network model. The model is trained and validated with data measured at a case study. The dam behavior towards different water level changes is reproduced by the model and a hysteresis phenomenon detected and studied. Artificial neural network models are shown to be a powerful tool for predicting and understanding seepage phenomenon.
Resumo:
The choice value and the testing process against the vigilance parameter, characteristic of ART Neural Network, are merged. Only, a single unique test is required to determine if a committed category node can represent the current input or not. Advantages of APT over ART are: 1-Avoid testing every committed category node before deciding to train a committed category node or a new node must be committed, 2-The vigilance parameter is fixed during training, and 3-The choice value parameter is eliminated.
Resumo:
One of the biggest challenges that software developers face is to make an accurate estimate of the project effort. Radial basis function neural networks have been used to software effort estimation in this work using NASA dataset. This paper evaluates and compares radial basis function versus a regression model. The results show that radial basis function neural network have obtained less Mean Square Error than the regression method.