965 resultados para NEUROTROPHIC FACTOR BDNF
Resumo:
PURPOSE: To evaluate the potential delay of the retinal degeneration in rd1/rd1 mice using recombinant human glial cell line-derived neurotrophic factor (rhGDNF) encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) microspheres. METHODS: rhGDNF-loaded PLGA microspheres were prepared using a water in oil in water (w/o/w) emulsion solvent extraction-evaporation process. In vitro, the rhGDNF release profile was assessed using radiolabeled factor. In vivo, rhGDNF microspheres, blank microspheres, or microspheres loaded with inactivated rhGDNF were injected into the vitreous of rd1/rd1 mice at postnatal day 11 (PN11). The extent of retinal degeneration was examined at PN28 using rhodopsin immunohistochemistry on whole flat-mount retinas, outer nuclear layer (ONL) cell counting on histology sections, and electroretinogram tracings. Immunohistochemical reactions for glial fibrillary acidic protein (GFAP), F4/80, and rhodopsin were performed on cryosections. RESULTS: Significant delay of rod photoreceptors degeneration was observed in mice receiving the rhGDNF-loaded microspheres compared to either untreated mice or to mice receiving blank or inactivated rhGDNF microspheres. The degeneration delay in the eyes receiving the rhGDNF microspheres was illustrated by the increased rhodopsin positive signals, the preservation of significantly higher number of cell nuclei within the ONL, and significant b-wave increase. A reduction of the subretinal glial proliferation was also observed in these treated eyes. No significant intraocular inflammatory reaction was observed after the intravitreous injection of the various microspheres. CONCLUSIONS: A single intravitreous injection of rhGDNF-loaded microspheres slows the retinal degeneration processes in rd1/rd1 mice. The use of injectable, biodegradable polymeric systems in the vitreous enables the efficient delivery of therapeutic proteins for the treatment of retinal diseases.
Resumo:
A limited number of receptor tyrosine kinases (e.g., ErbB and fibroblast growth factor receptor families) have been genetically linked to breast cancer development. Here, we investigated the contribution of the Ret receptor tyrosine kinase to breast tumor biology. Ret was expressed in primary breast tumors and cell lines. In estrogen receptor (ER)alpha-positive MCF7 and T47D lines, the ligand (glial-derived neurotrophic factor) activated signaling pathways and increased anchorage-independent proliferation in a Ret-dependent manner, showing that Ret signaling is functional in breast tumor cells. Ret expression was induced by estrogens and Ret signaling enhanced estrogen-driven proliferation, highlighting the functional interaction of Ret and ER pathways. Furthermore, Ret was detected in primary cancers, and there were higher Ret levels in ERalpha-positive tumors. In summary, we showed that Ret is a novel proliferative pathway interacting with ER signaling in vitro. Expression of Ret in primary breast tumors suggests that Ret might be a novel therapeutic target in breast cancer.
Resumo:
The dopamine (DA) transporter (DAT) is a plasma membrane glycoprotein expressed in dopaminergic (DA-) cells that takes back DA into presynaptic neurons after its release. DAT dysfunction has been involved in different neuro-psychiatric disorders including Parkinson's disease (PD). On the other hand, numerous studies support that the glial cell line-derived neurotrophic factor (GDNF) has a protective effect on DA-cells. However, studies in rodents show that prolonged GDNF over-expression may cause a tyrosine hydroxylase (TH, the limiting enzyme in DA synthesis) decline. The evidence of TH down-regulation suggests that another player in DA handling, DAT, may also be regulated by prolonged GDNF over-expression, and the possibility that this effect is induced at GDNF expression levels lower than those inducing TH down-regulation. This issue was investigated here using intrastriatal injections of a tetracycline-inducible adeno-associated viral vector expressing human GDNF cDNA (AAV-tetON-GDNF) in rats, and doxycycline (DOX; 0.01, 0.03, 0.5 and 3mg/ml) in the drinking water during 5weeks. We found that 3mg/ml DOX promotes an increase in striatal GDNF expression of 12× basal GDNF levels and both DA uptake decrease and TH down-regulation in its native and Ser40 phosphorylated forms. However, 0.5mg/ml DOX promotes a GDNF expression increase of 3× basal GDNF levels with DA uptake decrease but not TH down-regulation. The use of western-blot under non-reducing conditions, co-immunoprecipitation and in situ proximity ligation assay revealed that the DA uptake decrease is associated with the formation of DAT dimers and an increase in DAT-α-synuclein interactions, without changes in total DAT levels or its compartmental distribution. In conclusion, at appropriate GDNF transduction levels, DA uptake is regulated through DAT protein-protein interactions without interfering with DA synthesis.
Resumo:
Intrahippocampal administration of kainic acid (KA) induces synaptic release of neurotrophins, mainly brain-derived neurotrophic factor, which contributes to the acute neuronal excitation produced by the toxin. Two protein tyrosine kinase inhibitors, herbimycin A and K252a, were administered intracerebroventricularly, in a single dose, to attenuate neurotrophin signaling during the acute effects of KA, and their role in epileptogenesis was evaluated in adult, male Wistar rats weighing 250-300 g. The latency for the first Racine stage V seizure was 90 ± 8 min in saline controls (N = 4) which increased to 369 ± 71 and 322 ± 63 min in animals receiving herbimycin A (1.74 nmol, N = 4) and K252a (10 pmol, N = 4), respectively. Behavioral alterations were accompanied by diminished duration of EEG paroxysms in herbimycin A- and K252a-treated animals. Notwithstanding the reduction in seizure severity, cell death (60-90% of cell loss in KA-treated animals) in limbic regions was unchanged by herbimycin A and K252a. However, aberrant mossy fiber sprouting was significantly reduced in the ipsilateral dorsal hippocampus of K252a-treated animals. In this model of temporal lobe epilepsy, both protein kinase inhibitors diminished the acute epileptic activity triggered by KA and the ensuing morphological alterations in the dentate gyrus without diminishing cell loss. Our current data indicating that K252a, but not herbimycin, has an influence over KA-induced mossy fiber sprouting further suggest that protein tyrosine kinase receptors are not the only factors which control this plasticity. Further experiments are necessary to elucidate the exact signaling systems associated with this K252a effect.
Resumo:
Affiliation: Jean-François Gauchat : Département de Pharmacologie, Faculté de médecine, Université de Montréal
Resumo:
L’interleukine 6 (IL-6) est une cytokine qui joue un rôle essentiel dans l’inflammation. Son récepteur (IL-6R) est composé de la chaîne non signalétique IL-6Rα et de la chaîne transductrice du signal gp130, commune aux cytokines de la famille IL-6. La liaison de l’IL-6 à son récepteur permet l’activation de plusieurs voies de signalisation, notamment des voies Jak/STAT1 et préférentiellement Jak/STAT3. De façon complémentaire, nous avons démontré que l’IL-6 est capable d’activer la voie Jak/STAT5 dans les lymphocytes T CD4. L’activation de cette voie de signalisation pourrait être impliquée dans le rétrocontrôle des effets pro-inflammatoires de l’IL-6 sur les cellules T CD4. Le facteur neurotrophique ciliaire (CNTF) et la « cardiotrophin-like cytokine/cytokine-like factor 1 » (CLC/CLF) sont deux cytokines de la famille de l’IL-6 qui signalent à travers un récepteur commun, le récepteur au CNTF (CNTFR), composé du CNTFRα, « leukaemia inhibitory factor receptor β » (LIFRβ) et gp130. Toutes deux exercent des actions au niveau du système immunitaire, or la chaîne CNTFRα de leur récepteur n’y est pas exprimée. Il a été montré que le CNTFR humain peut également activer un récepteur formé des sous-unités IL-6Rα, LIFRβ et gp130. Nous avons comparé les effets du CNTF et du CLC/CLF de souris sur des transfectants exprimant LIFRβ et gp130 et les chaines α connues de la famille IL-6 (IL-6Rα, IL-11Rβ et CNTFRα). Nos résultats indiquent que le CNTF de souris, comme le CNTF humain est capable d’activer un récepteur formé de l’IL-6Rα, LIFRβ et gp130. Toutefois cette propriété n’est pas partagée par CLC/CLF et le récepteur impliqué dans les effets de cette cytokine sur le système immunitaire reste donc à identifier. L’IL-27 appartient à la famille de l’IL-6 composée d’une sous-unité cytokinique, p28, associée à un récepteur soluble « l’Epstein-Barr virus-induced gene 3» (EBI3). La sous-unité p28 peut s’associer avec le récepteur soluble CLF pour former une cytokine capable d’activer les lymphocytes T. Dans le but de caractériser cette cytokine, nous avons montré que p28/CLF agit aussi sur les lymphocytes B et permet leur différenciation en plasmocytes. Le partage de l’IL-6R par l’IL-6 et p28/CLF semble être à l’origine de la similarité des effets de ces deux cytokines. De plus, nous avons observé des effets semblables à ceux de l’IL-6 suite à l’association de la sous-unité p28 seule avec la chaîne IL-6Rα. En effet, afin de mieux caractériser la cytokine p28/CLF, nous avons étudié les effets dus au recrutement de la chaîne IL-6Rα par la sous-unité p28. Les cytokines de la famille de l’IL-6 sont composées de quatre hélices α disposées de façon anti-parallèle deux à deux. La sous-unité p28 possède, au niveau d’une boucle reliant deux hélices α, un motif de plusieurs acides glutamiques consécutifs (motif polyE) qui n’est retrouvé dans aucune autre cytokine de cette famille. Nous avons démontré que ce motif est impliqué dans la liaison de cette sous-unité avec l’hydroxyapatite et l’os. Cette caractéristique de p28 pourrait permettre un ciblage de l’IL-27 (p28/EBI3) et de p28/CLF préférentiellement vers la niche endostéale des cellules souches et des cellules immunitaires.
Resumo:
Ce mémoire présente mes travaux ayant menés au développement d’une première génération de radioligands marqués au fluor-18 (t1/2 = 110 min) et au carbone-11 (t1/2 = 20.4 min) destinés à l’imagerie cérébrale in vivo du récepteur tyrosine kinase neurotrophique de type 2 (TrkB) en tomographie par émission de positons (TEP). Ces travaux reposent sur l’identification récente de ligands de TrkB non peptidiques à hautes affinités dérivés du 7,8-dihydroxyflavone. La synthèse d’une série de dérivés du 7,8-dihydroxyflavone non-radioactifs de même que des précuseurs à l’incorporation du fluro-18 et du carbone-11 a d’abord été effectuée. Partant des précurseurs adéquats synthétisés, la radiosynthèse de deux radioligands, l’un marqué au fluor-18 et l’autre au carbone-11, a été développée. Ces radiosynthèses reposent respectivement sur une 18F-radiofluorination nucléophile aromatique nouvelle et hautement efficace et sur une 11C-méthylation N-sélective. Les radiotraceurs de TrkB ainsi obtenus ont ensuite été évalués in vitro en autoradiographie et in vivo en tant que traceurs TEP dans des rats. L’évaluation des propriétés physico-chimique de même que de la stabilité in vitro des radiotraceurs sont présentées. Partant d’une série d’analogues cristallisés de ces flavones synthétiques, une étude de relation structure-activité a été menée. La combinaison de cette étude, de pair avec l’évaluation in vivo de la première génération de radiotraceurs de TrkB a aussi permis d’investiguer les pharmacophores nécessaires à l’affinité de ces ligands de même que d’identifier des fragments structurels associés au métabolisme des radiotraceurs. La radiosynthèse d’un troisième radioligand de TrkB et son évaluation TEP in vivo de même que la mise en lumière des modifications structurelles utiles au développement d’une seconde génération de radioligands de TrkB avec des propriétés optimisées pour fin d’imagerie TEP sont aussi détaillés.
Resumo:
Parkinson’s disease is a chronic progressive neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the SNpc resulting in severe motor impairments. Serotonergic system plays an important regulatory role in the pathophysiology of PD in rats, the evaluation of which provides valuable insight on the underlying mechanisms of motor, cognitive and memory deficits in PD. We observed a decrease in 5-HT content in the brain regions of 6-OHDA infused rat compared to control. The decreased 5-HT content resulted in a decrease of total 5-HT, 5-HT2A receptors and 5-HTT function and an increase of 5-HT2C receptor function. 5-HT receptor subtypes - 5-HT2A and 5-HT2C receptors have differential regulatory role on the modulation of DA neurotransmission in different brain regions during PD. Our observation of impaired serotonergic neurotransmission in SNpc, corpus striatum, cerebral cortex, hippocampus, cerebellum and brain stem demonstrate that although PD primarily results from neurodegeneration in the SNpc, the associated neurochemical changes in other areas of the brain significantly contributes to the different motor and non motor symptoms of PD. The antioxidant enzymes – SOD, CAT and GPx showed significant down regulation which indicates increased oxidative damage resulting in neurodegeneration. We also observed an increase in the level of lipid peroxidation. Reduced expression of anti-apoptotic Akt and enhanced expression of NF-B resulting from oxidative stress caused an activation of caspase-8 thus leading the cells to neurodegeneration by apoptosis. BMC administration in combination with 5-HT and GABA to PD rats showed reversal of the impaired serotonergic neurotransmission and oxidative stress mediated apoptosis. The transplanted BMC expressed NeuN confirming that 5-HT and GABA induced the differentiation and proliferation of BMC to neurons in the SNpc along with an increase in DA content and an enhanced expression of TH. Neurotrophic factors – BDNF and GDNF rendered neuroprotective effects accompanied by improvement in behavioural deficits indicating a significant reversal of altered dopaminergic and serotonergic neurotransmission in PD. The restorative and neuroprotective effects of BMC in combination with 5-HT and GABA are of immense therapeutic significance in the clinical management of PD.
Resumo:
Nanoparticulate drug delivery systems provide wide opportunities for solving problems associated with drug stability or disease states and create great expectations in the area of drug delivery (Bosselmann & Williams, 2012). Nanotechnology, in a simple way, explains the technology that deals with one billionth of a meter scale (Ochekpe, et al., 2009). Fewer side effects, poor bioavailability, absorption at intestine, solubility, specific delivery to site of action with good pharmacological efficiency, slow release, degradation of drug and effective therapeutic outcome, are the major challenges faced by most of the drug delivery systems. To a great extent, biopolymer coated drug delivery systems coupled with nanotechnology alleviate the major drawbacks of the common delivery methods. Chitosan, deacetylated chitin, is a copolymer of β-(1, 4) linked glucosamine (deacetylated unit) and N- acetyl glucosamine (acetylated unit) (Radhakumary et al., 2005). Chitosan is biodegradable, non-toxic and bio compatible. Owing to the removal of acetyl moieties that are present in the amine functional groups of chitin, chitosan is readily soluble in aqueous acidic solution. The solubilisation occurs through the protonation of amino groups on the C-2 position of D-glucosamine residues whereby polysaccharide is converted into polycation in acidic media. Chitosan interacts with many active compounds due to the presence of amine group in it. The presence of this active amine group in chitosan was exploited for the interaction with the active molecules in the present study. Nanoparticles of chitosan coupled drugs are utilized for drug delivery in eye, brain, liver, cancer tissues, treatment of spinal cord injury and infections (Sharma et al., 2007; Li, et a., 2009; Paolicelli et al., 2009; Cho et al., 2010). To deliver drugs directly to the intended site of action and to improve pharmacological efficiency by minimizing undesired side effects elsewhere in the body and decrease the long-term use of many drugs, polymeric drug delivery systems can be used (Thatte et al., 2005).
Resumo:
Emerging evidence suggests that dietary-derived flavonoids have the potential to improve human memory and neuro-cognitive performance via their ability to protect vulnerable neurons, enhance existing neuronal function and stimulate neuronal regeneration. Long-term potentiation (LTP) is widely considered to be one of the major mechanisms underlying memory acquisition, consolidation and storage in the brain and is known to be controlled at the molecular level by the activation of a number of neuronal signalling pathways. These pathways include the phosphatidylinositol-3 kinase/protein kinase B/Akt (Akt), protein kinase C, protein kinase A, Ca-calmodulin kinase and mitogen-activated protein kinase pathways. Growing evidence suggests that flavonoids exert effects on LTP, and consequently memory and cognitive performance, through their interactions with these signalling pathways. Of particular interest is the ability of flavonoids to activate the extracellular signal-regulated kinase and the Akt signalling pathways leading to the activation of the cAMP-response element-binding protein, a transcription factor responsible for increasing the expression of a number of neurotrophins important in LTP and long-term memory. One such neurotrophin is brain-derived neurotrophic factor, which is known to be crucial in controlling synapse growth, in promoting an increase in dendritic spine density and in enhancing synaptic receptor density. The present review explores the potential of flavonoids and their metabolite forms to promote memory and learning through their interactions with neuronal signalling pathways pivotal in controlling LTP and memory in human subjects.
Resumo:
Aims: While much data exist for the effects of flavonoid-rich foods on spatial memory in rodents, there are no such data for foods/beverages predominantly containing hydroxycinnamates and phenolic acids. To address this, we investigated the effects of moderate Champagne wine intake, which is rich in these components, on spatial memory and related mechanisms relative to the alcohol- and energy-matched controls. Results: In contrast to the isocaloric and alcohol-matched controls, supplementation with Champagne wine (1.78 ml/kg BW, alcohol 12.5% vol.) for 6 weeks led to an improvement in spatial working memory in aged rodents. Targeted protein arrays indicated that these behavioral effects were paralleled by the differential expression of a number of hippocampal and cortical proteins (relative to the isocaloric control group), including those involved in signal transduction, neuroplasticity, apoptosis, and cell cycle regulation. Western immunoblotting confirmed the differential modulation of brain-derived neurotrophic factor, cAMP response-element-binding protein (CREB), p38, dystrophin, 2',3'-cyclic-nucleotide 3'-phosphodiesterase, mammalian target of rapamycin (mTOR), and Bcl-xL in response to Champagne supplementation compared to the control drink, and the modulation of mTOR, Bcl-xL, and CREB in response to alcohol supplementation. Innovation: Our data suggest that smaller phenolics such as gallic acid, protocatechuic acid, tyrosol, caftaric acid, and caffeic acid, in addition to flavonoids, are capable of exerting improvements in spatial memory via the modulation in hippocampal signaling and protein expression. Conclusion: Changes in spatial working memory induced by the Champagne supplementation are linked to the effects of absorbed phenolics on cytoskeletal proteins, neurotrophin expression, and the effects of alcohol on the regulation of apoptotic events in the hippocampus and cortex. Antioxid. Redox Signal. 00, 000-000.
Resumo:
Alzheimer`s Disease (AD) is the most common type of dementia among the elderly, with devastating consequences for the patient, their relatives, and caregivers. More than 300 genetic polymorphisms have been involved with AD, demonstrating that this condition is polygenic and with a complex pattern of inheritance. This paper aims to report and compare the results of AD genetics studies in case-control and familial analysis performed in Brazil since our first publication, 10 years ago. They include the following genes/markers: Apolipoprotein E (APOE), 5-hidroxytryptamine transporter length polymorphic region (5-HTTLPR), brain-derived neurotrophin factor (BDNF), monoamine oxidase A (MAO-A), and two simple-sequence tandem repeat polymorphisms (DXS1047 and D10S1423). Previously unpublished data of the interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) genes are reported here briefly. Results from others Brazilian studies with AD patients are also reported at this short review. Four local families studied with various markers at the chromosome 21, 19, 14, and 1 are briefly reported for the first time. The importance of studying DNA samples from Brazil is highlighted because of the uniqueness of its population, which presents both intense ethnical miscegenation, mainly at the east coast, but also clusters with high inbreeding rates in rural areas at the countryside. We discuss the current stage of extending these studies using high-throughput methods of large-scale genotyping, such as single nucleotide polymorphism microarrays, associated with bioinformatics tools that allow the analysis of such extensive number of genetics variables, with different levels of penetrance. There is still a long way between the huge amount of data gathered so far and the actual application toward the full understanding of AD, but the final goal is to develop precise tools for diagnosis and prognosis, creating new strategies for better treatments based on genetic profile.
Resumo:
Cocaine- and amphetamine-regulated transcript (CART) is widespread in the rodent brain. CART has been implicated in many different functions including reward, feeding, stress responses, sensory processing, learning and memory formation. Recent studies have suggested that CART may also play a role in neural development. Therefore, in the present study we compared the distribution pattern and levels of CART mRNA expression in the forebrain of male and female rats at different stages of postnatal development: P06, P26 and P66. At 6 days of age (P06), male and female rats showed increased CART expression in the somatosensory and piriform cortices, indusium griseum, dentate gyrus, nucleus accumbens, and ventral premammillary nucleus. Interestingly, we found a striking expression of CART mRNA in the ventral posteromedial and ventral posterolateral thalamic nuclei. This thalamic expression was absent at P26 and P66. Contrastingly, at P06 CART mRNA expression was decreased in the arcuate nucleus. Comparing sexes, we found increased CART mRNA expression in the anteroventral periventricular nucleus of adult females. In other regions including the CA1, the lateral hypothalamic area and the dorsomedial nucleus of the hypothalamus, CART expression was not different comparing postnatal ages and sexes. Our findings indicate that CART gene expression is induced in a distinct temporal and spatial manner in forebrain sites of male and female rats. They also suggest that CART peptide participate in the development of neural pathways related to selective functions including sensory processing, reward and memory formation. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Amino acids are well known to be an important class of compounds for the maintenance of body homeostasis and their deficit, even for the polar neuroactive aminoacids, can be controlled by supplementation. However, for the amino acid taurine (2-aminoethanesulfonic acid) this is not true. Due its special physicochemical properties, taurine is unable to cross the blood-brain barrier. In addition of injured taurine transport systems under pathological conditions, CNS supplementation of taurine is almost null. Taurine is a potent antioxidant and anti-inflammatory semi-essential amino acid extensively involved in neurological activities, acting as neurotrophic factor, binding to GABA A/glycine receptors and blocking the excitotoxicity glutamate-induced pathway leading to be a neuroprotective effect and neuromodulation. Taurine deficits have been implicated in several CNS diseases, such as Alzheimer's, Parkinson's, epilepsy and in the damage of retinal neurons. This review describes the CNS physiological functions of taurine and the development of new derivatives based on its structure useful in CNS disease treatment.&; 2012 by the authors; licensee MDPI, Basel, Switzerland.