959 resultados para NEAR-SURFACE STRUCTURE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Civil

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Civil

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil (área de especialização em Estruturas e Geotecnia)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Specialized setae placed on proximal segments of appendages in tarantulas have been related to sound production (stridulation), used in defense or sexual communication. The surface structure of called stridulatory setae of Acanthoscurria suina Pocock, 1903 was studied by SEM. Three morphological types of setae were recognized and at least two of them could be involved in stridulation. Their role in sexual communication was tested by experimental removal. Our results showed no differences in the sexual success between the setaeless and control individuals. Consequently, a defensive function for stridulatory setae seems to be more likely than a sexual function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To date, state-of-the-art seismic material parameter estimates from multi-component sea-bed seismic data are based on the assumption that the sea-bed consists of a fully elastic half-space. In reality, however, the shallow sea-bed generally consists of soft, unconsolidated sediments that are characterized by strong to very strong seismic attenuation. To explore the potential implications, we apply a state-of-the-art elastic decomposition algorithm to synthetic data for a range of canonical sea-bed models consisting of a viscoelastic half-space of varying attenuation. We find that in the presence of strong seismic attenuation, as quantified by Q-values of 10 or less, significant errors arise in the conventional elastic estimation of seismic properties. Tests on synthetic data indicate that these errors can be largely avoided by accounting for the inherent attenuation of the seafloor when estimating the seismic parameters. This can be achieved by replacing the real-valued expressions for the elastic moduli in the governing equations in the parameter estimation by their complex-valued viscoelastic equivalents. The practical application of our parameter procedure yields realistic estimates of the elastic seismic material properties of the shallow sea-bed, while the corresponding Q-estimates seem to be biased towards too low values, particularly for S-waves. Given that the estimation of inelastic material parameters is notoriously difficult, particularly in the immediate vicinity of the sea-bed, this is expected to be of interest and importance for civil and ocean engineering purposes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Concrete curing is closely related to cement hydration, microstructure development, and concrete performance. Application of a liquid membrane-forming curing compound is among the most widely used curing methods for concrete pavements and bridge decks. Curing compounds are economical, easy to apply, and maintenance free. However, limited research has been done to investigate the effectiveness of different curing compounds and their application technologies. No reliable standard testing method is available to evaluate the effectiveness of curing, especially of the field concrete curing. The present research investigates the effects of curing compound materials and application technologies on concrete properties, especially on the properties of surface concrete. This report presents a literature review of curing technology, with an emphasis on curing compounds, and the experimental results from the first part of this research—lab investigation. In the lab investigation, three curing compounds were selected and applied to mortar specimens at three different times after casting. Two application methods, single- and double-layer applications, were employed. Moisture content, conductivity, sorptivity, and degree of hydration were measured at different depths of the specimens. Flexural and compressive strength of the specimens were also tested. Statistical analysis was conducted to examine the relationships between these material properties. The research results indicate that application of a curing compound significantly increased moisture content and degree of cement hydration and reduced sorptivity of the near-surface-area concrete. For given concrete materials and mix proportions, optimal application time of curing compounds depended primarily upon the weather condition. If a sufficient amount of a high-efficiency-index curing compound was uniformly applied, no double-layer application was necessary. Among all test methods applied, the sorptivity test is the most sensitive one to provide good indication for the subtle changes in microstructure of the near-surface-area concrete caused by different curing materials and application methods. Sorptivity measurement has a close relation with moisture content and degree of hydration. The research results have established a baseline for and provided insight into the further development of testing procedures for evaluation of curing compounds in field. Recommendations are provided for further field study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AbstractFor a wide range of environmental, hydrological, and engineering applications there is a fast growing need for high-resolution imaging. In this context, waveform tomographic imaging of crosshole georadar data is a powerful method able to provide images of pertinent electrical properties in near-surface environments with unprecedented spatial resolution. In contrast, conventional ray-based tomographic methods, which consider only a very limited part of the recorded signal (first-arrival traveltimes and maximum first-cycle amplitudes), suffer from inherent limitations in resolution and may prove to be inadequate in complex environments. For a typical crosshole georadar survey the potential improvement in resolution when using waveform-based approaches instead of ray-based approaches is in the range of one order-of- magnitude. Moreover, the spatial resolution of waveform-based inversions is comparable to that of common logging methods. While in exploration seismology waveform tomographic imaging has become well established over the past two decades, it is comparably still underdeveloped in the georadar domain despite corresponding needs. Recently, different groups have presented finite-difference time-domain waveform inversion schemes for crosshole georadar data, which are adaptations and extensions of Tarantola's seminal nonlinear generalized least-squares approach developed for the seismic case. First applications of these new crosshole georadar waveform inversion schemes on synthetic and field data have shown promising results. However, there is little known about the limits and performance of such schemes in complex environments. To this end, the general motivation of my thesis is the evaluation of the robustness and limitations of waveform inversion algorithms for crosshole georadar data in order to apply such schemes to a wide range of real world problems.One crucial issue to making applicable and effective any waveform scheme to real-world crosshole georadar problems is the accurate estimation of the source wavelet, which is unknown in reality. Waveform inversion schemes for crosshole georadar data require forward simulations of the wavefield in order to iteratively solve the inverse problem. Therefore, accurate knowledge of the source wavelet is critically important for successful application of such schemes. Relatively small differences in the estimated source wavelet shape can lead to large differences in the resulting tomograms. In the first part of my thesis, I explore the viability and robustness of a relatively simple iterative deconvolution technique that incorporates the estimation of the source wavelet into the waveform inversion procedure rather than adding additional model parameters into the inversion problem. Extensive tests indicate that this source wavelet estimation technique is simple yet effective, and is able to provide remarkably accurate and robust estimates of the source wavelet in the presence of strong heterogeneity in both the dielectric permittivity and electrical conductivity as well as significant ambient noise in the recorded data. Furthermore, our tests also indicate that the approach is insensitive to the phase characteristics of the starting wavelet, which is not the case when directly incorporating the wavelet estimation into the inverse problem.Another critical issue with crosshole georadar waveform inversion schemes which clearly needs to be investigated is the consequence of the common assumption of frequency- independent electromagnetic constitutive parameters. This is crucial since in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behaviour. In particular, in the presence of water, there is a wide body of evidence showing that the dielectric permittivity can be significantly frequency dependent over the GPR frequency range, due to a variety of relaxation processes. The second part of my thesis is therefore dedicated to the evaluation of the reconstruction limits of a non-dispersive crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. I show that the inversion algorithm, combined with the iterative deconvolution-based source wavelet estimation procedure that is partially able to account for the frequency-dependent effects through an "effective" wavelet, performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho tem por objetivo a aferição dos impactos ambientais ocorridos ao longo da estrada São Domingos-Assomada, na ilha de Santiago na República de Cabo Verde, África Ocidental no período de 2003 a 2009, com ênfase sobre os compartimentos geomorfológicos e seus materiais estruturadores, bem como estabelecer medidas de minimização dos referidos impactos. O estudo ainda procurou mostrar que o monitoramento ambiental das obras da rodovia tem uma série de vantagens porque pode identificar tendências nocivas sobre as variáveis ambientais e sociais antes que seja tarde demais para minimizar ou prevenir seus impactos. Ao longo da pesquisa foram destacadas as principais atividades que originaram impactos ambientais causados pelas obras tanto na fase de reabilitação como na fase de exploração da via. Buscou-se ainda mostrar que a crescente intervenção antrópica ao longo da estrada tem repercutido cada vez mais intensamente sobre a dinâmica do relevo e nos processos de erosão do solo associados às práticas inadequadas de uso da terra. Os impactos ambientais ocorridos durante a exploração da via resultaram, sobretudo, na degradação dos compartimentos geomorfológicos, por estes se constituírem no principal suporte das demais organizações espaciais. Metodologicamente este trabalho abrangeu uma pesquisa aplicada de cunho descritivo e exploratório visando melhor identificar as alterações nos sistemas ambientais, decorrentes da implantação da estrada e das atividades antrópicas realizadas no seu entorno. A fim de estimar a repercussão das intervenções junto à população imediatamente afetada foram aplicadas entrevistas voltadas à avaliação da percepção dos riscos ambientais. A coleta de dados geomorfológicos em campo foi realizada mediante a observação in loco das condições ambientais e sua posterior cartografação em gabinete. Os resultados dessas foram cotejados com o levantamento da literatura especializada a fim de permitir o enquadramento coerente do grau dos agravos ambientais analisados. Os resultados do estudo apontaram que a degradação dos compartimentos geomorfológicos e suas formações superficiais não ocorrem unicamente em função da estrada, mas também pelas práticas tradicionais de uso da terra. Ainda foi possível constatar que no caso da estrada São Domingos – Assomada, as obras de recuperação não levam em conta à dinâmica do relevo, ou seja, não consideram os parâmetros morfogenéticos. Dessa forma, tais obras essenciais de infra-estrutura acabam, muitas vezes, durando pouco tempo, desperdiçando recursos financeiros que são escassos nos países em desenvolvimento.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Waveform-based tomographic imaging of crosshole georadar data is a powerful method to investigate the shallow subsurface because of its ability to provide images of electrical properties in near-surface environments with unprecedented spatial resolution. A critical issue with waveform inversion is the a priori unknown source signal. Indeed, the estimation of the source pulse is notoriously difficult but essential for the effective application of this method. Here, we explore the viability and robustness of a recently proposed deconvolution-based procedure to estimate the source pulse during waveform inversion of crosshole georadar data, where changes in wavelet shape with location as a result of varying near-field conditions and differences in antenna coupling may be significant. Specifically, we examine whether a single, average estimated source current function can adequately represent the pulses radiated at all transmitter locations during a crosshole georadar survey, or whether a separate source wavelet estimation should be performed for each transmitter gather. Tests with synthetic and field data indicate that remarkably good tomographic reconstructions can be obtained using a single estimated source pulse when moderate to strong variability exists in the true source signal with antenna location. Only in the case of very strong variability in the true source pulse are tomographic reconstructions clearly improved by estimating a different source wavelet for each transmitter location.