980 resultados para NANOTECHNOLOGY (100700)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing interest in nanoscience and nanotechnology has prompted intense investigations into appropriate fabrication techniques. Self-organized, bottom-up growth of nanomaterials using plasma nanofabrication techniques1–10 has proven to be one of the most promising approaches for the construction of precisely tailored nanostructures (i.e., quantum dots,11–13 nanotubes,14–17 nanowires,18–20 etc.) arrays. Thus the primary aim of this chapter is to show how plasmas may be used to achieve a high level of control during the self-organized growth of a range of nanomaterials, from zero-dimensional quantum dots (Section 15.2) to one- and two-dimensional nanomaterials (Section 15.3) to nanostructured films (Section 15.4)...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric-pressure microplasma-assisted electrochemistry was used to synthesize Ag nanoparticles (NPs) for plasmonic applications. It is shown that the size and dispersion of the nanoparticles can be controlled by variation of the microplasma-assisted electrochemical process parameters such as electrolyte concentration and temperature. Moreover, Ag NP synthesis is also achieved in the absence of a stabilizer, with additional control over the dispersion and NP formation possible. As the microplasma directly reduces Ag ions in solution, the incorporation of toxic reducing agents into the electrolytic solution is unnecessary, making this an environmentally friendly fabrication technique with strong potential for the design and growth of plasmonic nanostructures for a variety of applications. These experiments therefore link microplasma-assisted electrochemical synthesis parameters with plasmonic characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generated by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particle number concentrations vary significantly with environment and, in this study, we attempt to assess the significance of these differences. Towards this aim, we reviewed 85 papers that have reported particle number concentrations levels at 126 sites covering different environments. We grouped the results into eight categories according to measurement location including: road tunnel, on-road, road-side, street canyon, urban, urban background, rural, and clean background. From these reports, the overall median number concentration for each of the eight site categories was calculated. The eight location categories may be classified into four distinct groups. The mean median particle number locations for these four types were found to be statistically different from each other. Rural and clean background sites had the lowest concentrations of about 3x103 cm-3. Urban and urban background sites showed concentrations that were three times higher (9x103 cm-3). The mean concentration for the street canyon, roadside and on-road measurement sites was 4.6x104 cm-3, while the highest concentrations were observed in the road tunnels (8.6x104 cm-3). This variation is important when assessing human exposure-response for which there is very little data available, making it difficult to develop health guidelines, a basis for national regulations. Our analyses shows that the current levels in environments affected by vehicle emissions are 3 to 28 times higher than in the natural environments. At present, there is no threshold level in response to exposure to ultrafine particles. Therefore, future control and management strategies should target a decrease of these particles in urban environments by more than one order of magnitude to bring them down to the natural background. At present there is a long way to go to achieve this.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Charge transport properties in organic semiconductors depend strongly on molecular order. Here we demonstrate field-effect transistors where drain current flows through a precisely defined array of nanostripes made of crystalline and highly ordered molecules. The molecular stripes are fabricated across the channel of the transistor by a stamp-assisted deposition of the molecular semiconductors from a solution. As the solvent evaporates, the capillary forces drive the solution to form menisci under the stamp protrusions. The solute precipitates only in the regions where the solution is confined by the menisci once the critical concentration is reached and self-organizes into molecularly ordered stripes 100-200 nm wide and a few monolayers high. The charge mobility measured along the stripes is 2 orders of magnitude larger than the values measured for spin-coated thin films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background & Research Focus Managing knowledge for innovation and organisational benefit has been extensively investigated in studies of large firms (Smith, Collins & Clark, 2005; Zucker, et al., 2007) and to a large extent there is limited research into studies of small- and medium- sized enterprises (SMEs). There are some investigations in knowledge management research on SMEs, but what remains to be seen in particular is the question of where are the potential challenges for managing knowledge more effectively within these firms? Effective knowledge management (KM) processes and systems lead to improved performance in pursuing distinct capabilities that contribute to firm-level innovation (Nassim 2009; Zucker et al. 2007; Verona and Ravasi 2003). Managing internal and external knowledge in a way that links it closely to the innovation process can assist the creation and implementation of new products and services. KM is particularly important in knowledge intensive firms where the knowledge requirements are highly specialized, diverse and often emergent. However, to a large extent the KM processes of small firms that are often the source of new knowledge and an important element of the value networks of larger companies have not been closely studied. To address this gap which is of increasing importance with the growing number of small firms, we need to further investigate knowledge management processes and the ways that firms find, capture, apply and integrate knowledge from multiple sources for their innovation process. This study builds on the previous literature and applies existing frameworks and takes the process and activity view of knowledge management as a starting point of departure (see among others Kraaijenbrink, Wijnhoven & Groen, 2007; Enberg, Lindkvist, & Tell, 2006; Lu, Wang & Mao, 2007). In this paper, it is attempted to develop a better understanding of the challenges of knowledge management within the innovation process in small knowledge-oriented firms. The paper aims to explore knowledge management processes and practices in firms that are engaged in the new product/service development programs. Consistent with the exploratory character of the study, the research question is: How is knowledge integrated, sourced and recombined from internal and external sources for innovation and new product development? Research Method The research took an exploratory case study approach and developed a theoretical framework to investigate the knowledge situation of knowledge-intensive firms. Equipped with the conceptual foundation, the research adopted a multiple case study method investigating four diverse Australian knowledge-intensive firms from IT, biotechnology, nanotechnology and biochemistry industries. The multiple case study method allowed us to document in some depth the knowledge management experience of the theses firms. Case study data were collected through a review of company published data and semi-structured interviews with managers using an interview guide to ensure uniform coverage of the research themes. This interview guide was developed following development of the framework and a review of the methodologies and issues covered by similar studies in other countries and used some questions common to these studies. It was framed to gather data around knowledge management activity within the business, focusing on the identification, acquisition and utilisation of knowledge, but collecting a range of information about subject as well. The focus of the case studies was on the use of external and internal knowledge to support their knowledge intensive products and services. Key Findings Firstly a conceptual and strategic knowledge management framework has been developed. The knowledge determinants are related to the nature of knowledge, organisational context, and mechanism of the linkages between internal and external knowledge. Overall, a number of key observations derived from this study, which demonstrated the challenges of managing knowledge and how important KM is as a management tool for innovation process in knowledge-oriented firms. To summarise, findings suggest that knowledge management process in these firms is very much project focused and not embedded within the overall organisational routines and mainly based on ad hoc and informal processes. Our findings highlighted lack of formal knowledge management process within our sampled firms. This point to the need for more specialised capabilities in knowledge management for these firms. We observed a need for an effective knowledge transfer support system which is required to facilitate knowledge sharing and particularly capturing and transferring tacit knowledge from one team members to another. In sum, our findings indicate that building effective and adaptive IT systems to manage and share knowledge in the firm is one of the biggest challenges for these small firms. Also, there is little explicit strategy in small knowledge-intensive firms that is targeted at systematic KM either at the strategic or operational level. Therefore, a strategic approach to managing knowledge for innovation as well as leadership and management are essential to achieving effective KM. In particular, research findings demonstrate that gathering tacit knowledge, internal and external to the organization, and applying processes to ensure the availability of knowledge for innovation teams, drives down the risks and cost of innovation. KM activities and tools, such as KM systems, environmental scanning, benchmarking, intranets, firm-wide databases and communities of practice to acquire knowledge and to make it accessible, were elements of KM. Practical Implications The case study method that used in this study provides practical insight into the knowledge management process within Australian knowledge-intensive firms. It also provides useful lessons which can be used by other firms in managing the knowledge more effectively in the innovation process. The findings would be helpful for small firms that may be searching for a practical method for managing and integrating their specialised knowledge. Using the results of this exploratory study and to address the challenges of knowledge management, this study proposes five practices that are discussed in the paper for managing knowledge more efficiently to improve innovation: (1) Knowledge-based firms must be strategic in knowledge management processes for innovation, (2) Leadership and management should encourage various practices for knowledge management, (3) Capturing and sharing tacit knowledge is critical and should be managed, (4)Team knowledge integration practices should be developed, (5) Knowledge management and integration through communication networks, and technology systems should be encouraged and strengthen. In sum, the main managerial contribution of the paper is the recognition of knowledge determinants and processes, and their effects on the effective knowledge management within firm. This may serve as a useful benchmark in the strategic planning of the firm as it utilises new and specialised knowledge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Saliva as a biological fluid is gaining wider acceptance for diagnosing diseases. The growing interest in saliva as a biological fluid is due to its noninvasiveness, ease of use, cost-effectiveness, and multiple sample collection possibilities as well as minimal risk to health care professionals of contracting infectious organisms such as HIV and Hep B. However, the clinical translation of saliva is hampered by our lack of understanding of the biomolecular transportation from blood into saliva, the diurnal variations of biomolecules present in saliva, and relatively low levels of analytes (100th to a 1000th fold less than in blood). We provide information on the current status of salivary research, salivary diagnostics empowered by nanotechnology, and future prospects in this emerging field of saliva diagnostics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flexible graphene-based thin film supercapacitors were made using carbon nanotube (CNT) films as current collectors and graphene films as electrodes. The graphene sheets were produced by simple electrochemical exfoliation, while the graphene films with controlled thickness were prepared by vacuum filtration. The solid-state supercapacitor was made by using two graphene/CNT films on plastic substrates to sandwich a thin layer of gelled electrolyte. We found that the thin graphene film with thickness <1 μm can greatly increase the capacitance. Using only CNT films as electrodes, the device exhibited a capacitance as low as ~0.4 mF cm−2, whereas by adding a 360 nm thick graphene film to the CNT electrodes led to a ~4.3 mF cm−2 capacitance. We experimentally demonstrated that the conductive CNT film is equivalent to gold as a current collector while it provides a stronger binding force to the graphene film. Combining the high capacitance of the thin graphene film and the high conductivity of the CNT film, our devices exhibited high energy density (8–14 Wh kg−1) and power density (250–450 kW kg−1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subject of nanomaterials is very topical, with advances in knowledge made at a very rapid pace, making dissemination of this new knowledge a need of the hour. Although it is widely recognised that nanotechnology is playing a key role in many areas of societal endeavour, it is still unclear what risks certain nanomaterials may pose to humans and the environment. While nanotechnology has brought enormous benefits to humankind, its impact on human health and the environment is yet to be fully understood.