859 resultados para Multimedia Data Mining
Resumo:
The semiarid region of northeastern Brazil, the Caatinga, is extremely important due to its biodiversity and endemism. Measurements of plant physiology are crucial to the calibration of Dynamic Global Vegetation Models (DGVMs) that are currently used to simulate the responses of vegetation in face of global changes. In a field work realized in an area of preserved Caatinga forest located in Petrolina, Pernambuco, measurements of carbon assimilation (in response to light and CO2) were performed on 11 individuals of Poincianella microphylla, a native species that is abundant in this region. These data were used to calibrate the maximum carboxylation velocity (Vcmax) used in the INLAND model. The calibration techniques used were Multiple Linear Regression (MLR), and data mining techniques as the Classification And Regression Tree (CART) and K-MEANS. The results were compared to the UNCALIBRATED model. It was found that simulated Gross Primary Productivity (GPP) reached 72% of observed GPP when using the calibrated Vcmax values, whereas the UNCALIBRATED approach accounted for 42% of observed GPP. Thus, this work shows the benefits of calibrating DGVMs using field ecophysiological measurements, especially in areas where field data is scarce or non-existent, such as in the Caatinga
Resumo:
Co-training is a semi-supervised learning method that is designed to take advantage of the redundancy that is present when the object to be identified has multiple descriptions. Co-training is known to work well when the multiple descriptions are conditional independent given the class of the object. The presence of multiple descriptions of objects in the form of text, images, audio and video in multimedia applications appears to provide redundancy in the form that may be suitable for co-training. In this paper, we investigate the suitability of utilizing text and image data from the Web for co-training. We perform measurements to find indications of conditional independence in the texts and images obtained from the Web. Our measurements suggest that conditional independence is likely to be present in the data. Our experiments, within a relevance feedback framework to test whether a method that exploits the conditional independence outperforms methods that do not, also indicate that better performance can indeed be obtained by designing algorithms that exploit this form of the redundancy when it is present.
Resumo:
В статье рассмотрена проблема семантической разницы между содержимым мультимедиа и его текстовым описанием, определяемым вручную. Предложен комбинированный подход к представлению семантики мультимедиа, основанный на объединении близких по содержанию и текстовому описанию мультимедиа в классы, содержащие обобщённые описания объектов, связей между ними и ключевых слов текстовых метаданных из некоторого тезауруса. Для формирования этих классов используются операции иерархической кластеризации и машинного обучения. Данный подход позволяет расширить область поиска и навигации мультимедиа благодаря привлечению медиа-данных, имеющих схожее содержание и текстовое описание.
Resumo:
peaker(s): Jon Hare Organiser: Time: 25/06/2014 11:00-11:50 Location: B32/3077 Abstract The aggregation of items from social media streams, such as Flickr photos and Twitter tweets, into meaningful groups can help users contextualise and effectively consume the torrents of information on the social web. This task is challenging due to the scale of the streams and the inherently multimodal nature of the information being contextualised. In this talk I'll describe some of our recent work on trend and event detection in multimedia data streams. We focus on scalable streaming algorithms that can be applied to multimedia data streams from the web and the social web. The talk will cover two particular aspects of our work: mining Twitter for trending images by detecting near duplicates; and detecting social events in multimedia data with streaming clustering algorithms. I'll will describe in detail our techniques, and explore open questions and areas of potential future work, in both these tasks.
Resumo:
With the proliferation of multimedia data and ever-growing requests for multimedia applications, there is an increasing need for efficient and effective indexing, storage and retrieval of multimedia data, such as graphics, images, animation, video, audio and text. Due to the special characteristics of the multimedia data, the Multimedia Database management Systems (MMDBMSs) have emerged and attracted great research attention in recent years. Though much research effort has been devoted to this area, it is still far from maturity and there exist many open issues. In this dissertation, with the focus of addressing three of the essential challenges in developing the MMDBMS, namely, semantic gap, perception subjectivity and data organization, a systematic and integrated framework is proposed with video database and image database serving as the testbed. In particular, the framework addresses these challenges separately yet coherently from three main aspects of a MMDBMS: multimedia data representation, indexing and retrieval. In terms of multimedia data representation, the key to address the semantic gap issue is to intelligently and automatically model the mid-level representation and/or semi-semantic descriptors besides the extraction of the low-level media features. The data organization challenge is mainly addressed by the aspect of media indexing where various levels of indexing are required to support the diverse query requirements. In particular, the focus of this study is to facilitate the high-level video indexing by proposing a multimodal event mining framework associated with temporal knowledge discovery approaches. With respect to the perception subjectivity issue, advanced techniques are proposed to support users' interaction and to effectively model users' perception from the feedback at both the image-level and object-level.
Using Agents for Mining Maintenance Data while interacting in 3D Objectoriented Virtual Environments
Resumo:
This report demonstrates the development of: (a) object-oriented representation to provide 3D interactive environment using data provided by Woods Bagot; (b) establishing basis of agent technology for mining building maintenance data, and (C) 3D interaction in virtual environments using object-oriented representation. Applying data mining over industry maintenance database has been demonstrated in the previous report.
Resumo:
It is a big challenge to acquire correct user profiles for personalized text classification since users may be unsure in providing their interests. Traditional approaches to user profiling adopt machine learning (ML) to automatically discover classification knowledge from explicit user feedback in describing personal interests. However, the accuracy of ML-based methods cannot be significantly improved in many cases due to the term independence assumption and uncertainties associated with them. This paper presents a novel relevance feedback approach for personalized text classification. It basically applies data mining to discover knowledge from relevant and non-relevant text and constraints specific knowledge by reasoning rules to eliminate some conflicting information. We also developed a Dempster-Shafer (DS) approach as the means to utilise the specific knowledge to build high-quality data models for classification. The experimental results conducted on Reuters Corpus Volume 1 and TREC topics support that the proposed technique achieves encouraging performance in comparing with the state-of-the-art relevance feedback models.
Resumo:
Segmentation is a data mining technique yielding simplified representations of sequences of ordered points. A sequence is divided into some number of homogeneous blocks, and all points within a segment are described by a single value. The focus in this thesis is on piecewise-constant segments, where the most likely description for each segment and the most likely segmentation into some number of blocks can be computed efficiently. Representing sequences as segmentations is useful in, e.g., storage and indexing tasks in sequence databases, and segmentation can be used as a tool in learning about the structure of a given sequence. The discussion in this thesis begins with basic questions related to segmentation analysis, such as choosing the number of segments, and evaluating the obtained segmentations. Standard model selection techniques are shown to perform well for the sequence segmentation task. Segmentation evaluation is proposed with respect to a known segmentation structure. Applying segmentation on certain features of a sequence is shown to yield segmentations that are significantly close to the known underlying structure. Two extensions to the basic segmentation framework are introduced: unimodal segmentation and basis segmentation. The former is concerned with segmentations where the segment descriptions first increase and then decrease, and the latter with the interplay between different dimensions and segments in the sequence. These problems are formally defined and algorithms for solving them are provided and analyzed. Practical applications for segmentation techniques include time series and data stream analysis, text analysis, and biological sequence analysis. In this thesis segmentation applications are demonstrated in analyzing genomic sequences.
Resumo:
Cell transition data is obtained from a cellular phone that switches its current serving cell tower. The data consists of a sequence of transition events, which are pairs of cell identifiers and transition times. The focus of this thesis is applying data mining methods to such data, developing new algorithms, and extracting knowledge that will be a solid foundation on which to build location-aware applications. In addition to a thorough exploration of the features of the data, the tools and methods developed in this thesis provide solutions to three distinct research problems. First, we develop clustering algorithms that produce a reliable mapping between cell transitions and physical locations observed by users of mobile devices. The main clustering algorithm operates in online fashion, and we consider also a number of offline clustering methods for comparison. Second, we define the concept of significant locations, known as bases, and give an online algorithm for determining them. Finally, we consider the task of predicting the movement of the user, based on historical data. We develop a prediction algorithm that considers paths of movement in their entirety, instead of just the most recent movement history. All of the presented methods are evaluated with a significant body of real cell transition data, collected from about one hundred different individuals. The algorithms developed in this thesis are designed to be implemented on a mobile device, and require no extra hardware sensors or network infrastructure. By not relying on external services and keeping the user information as much as possible on the user s own personal device, we avoid privacy issues and let the users control the disclosure of their location information.
Resumo:
With the development of wearable and mobile computing technology, more and more people start using sleep-tracking tools to collect personal sleep data on a daily basis aiming at understanding and improving their sleep. While sleep quality is influenced by many factors in a person’s lifestyle context, such as exercise, diet and steps walked, existing tools simply visualize sleep data per se on a dashboard rather than analyse those data in combination with contextual factors. Hence many people find it difficult to make sense of their sleep data. In this paper, we present a cloud-based intelligent computing system named SleepExplorer that incorporates sleep domain knowledge and association rule mining for automated analysis on personal sleep data in light of contextual factors. Experiments show that the same contextual factors can play a distinct role in sleep of different people, and SleepExplorer could help users discover factors that are most relevant to their personal sleep.
Resumo:
Land cover (LC) changes play a major role in global as well as at regional scale patterns of the climate and biogeochemistry of the Earth system. LC information presents critical insights in understanding of Earth surface phenomena, particularly useful when obtained synoptically from remote sensing data. However, for developing countries and those with large geographical extent, regular LC mapping is prohibitive with data from commercial sensors (high cost factor) of limited spatial coverage (low temporal resolution and band swath). In this context, free MODIS data with good spectro-temporal resolution meet the purpose. LC mapping from these data has continuously evolved with advances in classification algorithms. This paper presents a comparative study of two robust data mining techniques, the multilayer perceptron (MLP) and decision tree (DT) on different products of MODIS data corresponding to Kolar district, Karnataka, India. The MODIS classified images when compared at three different spatial scales (at district level, taluk level and pixel level) shows that MLP based classification on minimum noise fraction components on MODIS 36 bands provide the most accurate LC mapping with 86% accuracy, while DT on MODIS 36 bands principal components leads to less accurate classification (69%).
Resumo:
With the emergence of large-volume and high-speed streaming data, the recent techniques for stream mining of CFIpsilas (closed frequent itemsets) will become inefficient. When concept drift occurs at a slow rate in high speed data streams, the rate of change of information across different sliding windows will be negligible. So, the user wonpsilat be devoid of change in information if we slide window by multiple transactions at a time. Therefore, we propose a novel approach for mining CFIpsilas cumulatively by making sliding width(ges1) over high speed data streams. However, it is nontrivial to mine CFIpsilas cumulatively over stream, because such growth may lead to the generation of exponential number of candidates for closure checking. In this study, we develop an efficient algorithm, stream-close, for mining CFIpsilas over stream by exploring some interesting properties. Our performance study reveals that stream-close achieves good scalability and has promising results.
Resumo:
A system for temporal data mining includes a computer readable medium having an application configured to receive at an input module a temporal data series having events with start times and end times, a set of allowed dwelling times and a threshold frequency. The system is further configured to identify, using a candidate identification and tracking module, one or more occurrences in the temporal data series of a candidate episode and increment a count for each identified occurrence. The system is also configured to produce at an output module an output for those episodes whose count of occurrences results in a frequency exceeding the threshold frequency.
Resumo:
We address the problem of mining targeted association rules over multidimensional market-basket data. Here, each transaction has, in addition to the set of purchased items, ancillary dimension attributes associated with it. Based on these dimensions, transactions can be visualized as distributed over cells of an n-dimensional cube. In this framework, a targeted association rule is of the form {X -> Y} R, where R is a convex region in the cube and X. Y is a traditional association rule within region R. We first describe the TOARM algorithm, based on classical techniques, for identifying targeted association rules. Then, we discuss the concepts of bottom-up aggregation and cubing, leading to the CellUnion technique. This approach is further extended, using notions of cube-count interleaving and credit-based pruning, to derive the IceCube algorithm. Our experiments demonstrate that IceCube consistently provides the best execution time performance, especially for large and complex data cubes.