961 resultados para Monomer units
Resumo:
Background: Delirium is an acute organ dysfunction common amongst patients treated in intensive care units. The associated morbidity and mortality are known to be substantial. Previous surveys have described which screening tools are used to diagnose delirium and which medications are used to treat delirium, but these data are not available for the United Kingdom. Aim: This survey aimed to describe the UK management of delirium by consultant intensivists. Additionally, knowledge and attitudes towards management of delirium were sought. The results will inform future research in this area. Methods: A national postal survey of members of the UK Intensive Care Society was performed. A concise two page questionnaire survey was sent, with a second round of surveys sent to non-respondents after 6 weeks. The questionnaire was in tick-box format. Results: Six hundred and eighty-one replies were received from 1308 questionnaires sent, giving a response rate of 52%. Twenty-five percent of respondents routinely screen for delirium, but of these only 55% use a screening tool validated for use in intensive care. The majority (80%) of those using a validated instrument used the Confusion Assessment Method for the Intensive Care Unit. Hyperactive delirium is treated pharmacologically by 95%; hypoactive delirium is treated pharmacologically by 25%, with haloperidol the most common agent used in both. Over 80% of respondents agreed that delirium prolongs mechanical ventilation and hospital stay and requires active treatment. Conclusions: This UK survey demonstrates screening for delirium is sporadic. Pharmacological treatment is usually with haloperidol in spite of the limited evidence to support this practice. Hypoactive delirium is infrequently treated pharmacologically.
Resumo:
This paper examines the process of creating and exploiting synergies between business units of a multi-unit corporation and the creation of internal value by combining and exploiting knowledge. It offers a framework to create and manage such synergies and undertakes an empirical test through in-depth study across three business units of Royal Vopak, a Dutch-based global multi-unit corporation. Finally, it offers lessons for corporate managers trying to create and manage cross-unit synergies.
Resumo:
The majority of previous research on social capital and health is limited to social capital in residential neighborhoods and communities. Using data from the Finnish 10-Town study we examined social capital at work as a predictor of health in a cohort of 9524 initially healthy local government employees in 1522 work units, who did not change their work unit between 2000 and 2004 and responded to surveys measuring social capital at work and health at both time-points. We used a validated tool to measure social capital with perceptions at the individual level and with co-workers' responses at the work unit level. According to multilevel modeling, a contextual effect of work unit social capital on self-rated health was not accounted for by the individual's socio-demographic characteristics or lifestyle. The odds for health impairment were 1.27 times higher for employees who constantly worked in units with low social capital than for those with constantly high work unit social capital. Corresponding odds ratios for low and declining individual-level social capital varied between 1.56 and 1.78. Increasing levels of individual social capital were associated with sustained good health. In conclusion, this longitudinal multilevel study provides support for the hypothesis that exposure to low social capital at work may be detrimental to the health of employees. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper investigates sub-integer implementations of the adaptive Gaussian mixture model (GMM) for background/foreground segmentation to allow the deployment of the method on low cost/low power processors that lack Floating Point Unit (FPU). We propose two novel integer computer arithmetic techniques to update Gaussian parameters. Specifically, the mean value and the variance of each Gaussian are updated by a redefined and generalised "round'' operation that emulates the original updating rules for a large set of learning rates. Weights are represented by counters that are updated following stochastic rules to allow a wider range of learning rates and the weight trend is approximated by a line or a staircase. We demonstrate that the memory footprint and computational cost of GMM are significantly reduced, without significantly affecting the performance of background/foreground segmentation.
Resumo:
In this paper, we explore various arithmetic units for possible use in high-speed, high-yield ALUs operated at scaled supply voltage with adaptive clock stretching. We demonstrate that careful logic optimization of the existing arithmetic units (to create hybrid units) indeed make them further amenable to supply voltage scaling. Such hybrid units result from mixing right amount of fast arithmetic into the slower ones. Simulations on different hybrid adder and multipliers in BPTM 70 nm technology show 18%-50% improvements in power compared to standard adders with only 2%-8% increase in die-area at iso-yield. These optimized datapath units can be used to construct voltage scalable robust ALUs that can operate at high clock frequency with minimal performance degradation due to occasional clock stretching. © 2009 IEEE.
Resumo:
In this paper we propose a design methodology for low-power high-performance, process-variation tolerant architecture for arithmetic units. The novelty of our approach lies in the fact that possible delay failures due to process variations and/or voltage scaling are predicted in advance and addressed by employing an elastic clocking technique. The prediction mechanism exploits the dependence of delay of arithmetic units upon input data patterns and identifies specific inputs that activate the critical path. Under iso-yield conditions, the proposed design operates at a lower scaled down Vdd without any performance degradation, while it ensures a superlative yield under a design style employing nominal supply and transistor threshold voltage. Simulation results show power savings of upto 29%, energy per computation savings of upto 25.5% and yield enhancement of upto 11.1% compared to the conventional adders and multipliers implemented in the 70nm BPTM technology. We incorporated the proposed modules in the execution unit of a five stage DLX pipeline to measure performance using SPEC2000 benchmarks [9]. Maximum area and throughput penalty obtained were 10% and 3% respectively.