926 resultados para Modular neural systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a very fast method for blindly initial- izing a nonlinear mapping which transforms a sum of random variables. The method provides a surprisingly good approximation even when the basic assumption is not fully satis¯ed. The method can been used success- fully for initializing nonlinearity in post-nonlinear mixtures or in Wiener system inversion, for improving algorithm speed and convergence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A system in which a linear dynamic part is followed by a non linear memoryless distortion a Wiener system is blindly inverted This kind of systems can be modelised as a postnonlinear mixture and using some results about these mixtures an e cient algorithm is proposed Results in a hard situation are presented and illustrate the e ciency of this algorithm

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensory information can interact to impact perception and behavior. Foods are appreciated according to their appearance, smell, taste and texture. Athletes and dancers combine visual, auditory, and somatosensory information to coordinate their movements. Under laboratory settings, detection and discrimination are likewise facilitated by multisensory signals. Research over the past several decades has shown that the requisite anatomy exists to support interactions between sensory systems in regions canonically designated as exclusively unisensory in their function and, more recently, that neural response interactions occur within these same regions, including even primary cortices and thalamic nuclei, at early post-stimulus latencies. Here, we review evidence concerning direct links between early, low-level neural response interactions and behavioral measures of multisensory integration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emotion regulation is crucial for successfully engaging in social interactions. Yet, little is known about the neural mechanisms controlling behavioral responses to emotional expressions perceived in the face of other people, which constitute a key element of interpersonal communication. Here, we investigated brain systems involved in social emotion perception and regulation, using functional magnetic resonance imaging (fMRI) in 20 healthy participants. The latter saw dynamic facial expressions of either happiness or sadness, and were asked to either imitate the expression or to suppress any expression on their own face (in addition to a gender judgment control task). fMRI results revealed higher activity in regions associated with emotion (e.g., the insula), motor function (e.g., motor cortex), and theory of mind (e.g., [pre]cuneus) during imitation. Activity in dorsal cingulate cortex was also increased during imitation, possibly reflecting greater action monitoring or conflict with own feeling states. In addition, premotor regions were more strongly activated during both imitation and suppression, suggesting a recruitment of motor control for both the production and inhibition of emotion expressions. Expressive suppression (eSUP) produced increases in dorsolateral and lateral prefrontal cortex typically related to cognitive control. These results suggest that voluntary imitation and eSUP modulate brain responses to emotional signals perceived from faces, by up- and down-regulating activity in distributed subcortical and cortical networks that are particularly involved in emotion, action monitoring, and cognitive control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose homeostasis requires the tight regulation of glucose utilization by liver, muscle and white or brown fat, and glucose production and release in the blood by liver. The major goal of maintaining glycemia at ∼ 5 mM is to ensure a sufficient flux of glucose to the brain, which depends mostly on this nutrient as a source of metabolic energy. This homeostatic process is controlled by hormones, mainly glucagon and insulin, and by autonomic nervous activities that control the metabolic state of liver, muscle and fat tissue but also the secretory activity of the endocrine pancreas. Activation or inhibition of the sympathetic or parasympathetic branches of the autonomic nervous systems are controlled by glucose-excited or glucose-inhibited neurons located at different anatomical sites, mainly in the brainstem and the hypothalamus. Activation of these neurons by hyper- or hypoglycemia represents a critical aspect of the control of glucose homeostasis, and loss of glucose sensing by these cells as well as by pancreatic β-cells is a hallmark of type 2 diabetes. In this article, aspects of the brain-endocrine pancreas axis are reviewed, highlighting the importance of central glucose sensing in the control of counterregulation to hypoglycemia but also mentioning the role of the neural control in β-cell mass and function. Overall, the conclusions of these studies is that impaired glucose homeostasis, such as associated with type 2 diabetes, but also defective counterregulation to hypoglycemia, may be caused by initial defects in glucose sensing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many classification systems rely on clustering techniques in which a collection of training examples is provided as an input, and a number of clusters c1,...cm modelling some concept C results as an output, such that every cluster ci is labelled as positive or negative. Given a new, unlabelled instance enew, the above classification is used to determine to which particular cluster ci this new instance belongs. In such a setting clusters can overlap, and a new unlabelled instance can be assigned to more than one cluster with conflicting labels. In the literature, such a case is usually solved non-deterministically by making a random choice. This paper presents a novel, hybrid approach to solve this situation by combining a neural network for classification along with a defeasible argumentation framework which models preference criteria for performing clustering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Para preservar la biodiversidad de los ecosistemas forestales de la Europa mediterránea en escenarios actuales y futuros de cambio global mediante una gestión forestal sostenible es necesario determinar cómo influye el medio ambiente y las propias características de los bosques sobre la biodiversidad que éstos albergan. Con este propósito, se analizó la influencia de diferentes factores ambientales y de estructura y composición del bosque sobre la riqueza de aves forestales a escala 1 × 1 km en Cataluña (NE de España). Se construyeron modelos univariantes y multivariantes de redes neuronales para respectivamente explorar la respuesta individual a las variables y obtener un modelo parsimonioso (ecológicamente interpretable) y preciso. La superficie de bosque (con una fracción de cabida cubierta superior a 5%), la fracción de cabida cubierta media, la temperatura anual y la precipitación estival medias fueron los mejores predictores de la riqueza de aves forestales. La red neuronal multivariante obtenida tuvo una buena capacidad de generalización salvo en las localidades con una mayor riqueza. Además, los bosques con diferentes grados de apertura del dosel arbóreo, más maduros y más diversos en cuanto a su composición de especies arbóreas se asociaron de forma positiva con una mayor riqueza de aves forestales. Finalmente, se proporcionan directrices de gestión para la planificación forestal que permitan promover la diversidad ornítica en esta región de la Europa mediterránea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Terveydenhuollossa käytetään nykyisin informaatioteknologian (IT) mahdollisuuksia parantamaan hoidon laatua, vähentämään hoitoon liittyviä kuluja sekä yksinkertaistamaan ja selkeyttämään laakareiden työnkulkua. Tietojärjestelmät, jotka edustavat jokaisen IT-ratkaisun ydintä, täytyy kehittää täyttämään lukuisia vaatimuksia, ja yksi niistä on kyky integroitua saumattomasti toisten tietojärjestelmien kanssa. Järjestelmäintegraatio on kuitenkin yhä haastava tehtävä, vaikka sita varten on kehitetty useita standardeja. Tässä työssä kuvataan vastakehitetyn lääketieteellisen tietojärjestelmän liittymäratkaisu. Työssä pohditaan vaatimuksia, jotka tällaiselle sovellukselle asetetaan, ja myös tapa, jolla vaatimukset toteutuvat on esitetty. Liittymaratkaisu on jaettu kahteen osaan, tietojärjestelmaliittymään ja "liittymakoneeseen" (interfacing engine). Edellinen on käsittää perustoiminnallisuuden, jota tarvitaan vastaanottamaan ja lähettämään tietoa toisiin järjestelmiin, kun taas jälkimmäinen tarjoaa tuen tuotantoympäristössa käytettäville standardeille. Molempien osien suunnitelu on esitelty perusteellisesti tässä työssä. Ongelma ratkaistiin modulaarisen ja geneerisen suunnittelun avulla. Tämä lähestymistapa osoitetaan työssä kestäväksi ja joustavaksi ratkaisuksi, jota voidaan käyttää tarkastelemaan laajaa valikoimaa liittymäratkaisulle asetettuja vaatimuksia. Lisaksi osoitetaan kuinka tehty ratkaisu voidaan joustavuutensa ansiosta helposti mukauttaa vaatimuksiin, joita ei ole etukäteen tunnistettu, ja siten saavutetaan perusta myös tulevaisuuden tarpeille

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lähitulevaisuudessa langattomien järjestelmien kaupalliset mahdollisuudet tulevat olemaan valtavia. Tutkiaksemme tulevia tarpeita, tässä diplomityössä esitellään kuinka voidaan suunnitella ja toteuttaa avoin langaton asiakas-palvelin järjestelmä. Järjestelmänä päätettiin käyttää Bluetooth:ia. Tutkituista langattomista standardeista Bluetooth sopii parhaiten akkukäyttöiselle laitteelle, jonka tulee olla monipuolinen. Lisäksi Bluetooth:iin on liitetty suuria kaupallisia odotuksia ja yksi työn tavoitteista olikin tutkia, ovatko nämä odotukset realistisia. Bluetooth:iin havaittiin liittyvän paljon ylimainontaa ja, sen todettiin olevan monimutkainen. Sillä on kuitenkin paljon ominaisuuksia ja erilaisten käyttöprofiilien avulla sitä voidaan käyttää monenlaisiin tehtäviin. Suunniteltu järjestelmä ajaa socket-palvelinta Bluetooth-yhteyden päällä. Tietyntyyppiseen liikenteeseen erikoistuneet socket:t tarjoavat vaaditun laajennattavuuden. Palvelin toteutetiin Linux-säikeenä ja se hallitsee Bluetooth protokollapinoa sekä sovelluksia, joita suoritetaan palvelimella. Näiden sovelluksien palvelut ovat muiden käytössä Bluetooth:n kautta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tämä diplomityö tutkii elektroniikka- ja telekommunikaatioteollisuutta sekä siihen läheisesti liittyviä robotteja ja robottijärjestelmiä. Tavoitteena on määrittää E&T-teollisuuden prosesseihin soveltuvien robottien testausmenetelmä. Tavoitteena on myös selvittää kahden ABB:n robotin soveltuvuutta E&T-teollisuuden tarpeisiin. Muutamia systemaattisia valmistusjärjestelmien suunnitteluun soveltuvia menetelmiä ja apuvälineitä on myös käsitelty. Alussa työ keskittyy elektroniikka- ja telekommunikaatioteollisuuden nykytilan tutkimiseen sekä siellä vallitsevien ja ennustettujen trendien kartoitukseen. Kohdat “Collaborative manufacturing” ja E&T-teollisuuden valmistusjärjestelmille asettamat vaatimukset käydään yksityiskohtaisesti läpi. Tutkimuksen pääkohteina ovat robotit, erityisesti ABB:n IRB 140 ja IRB 340 sekä robottien testausmenetelmän määrittäminen. Työssä käydään läpi IRB 340:llä suoritetut testit, jotka tehtiin sekä konenäköjärjestelmää apuna käyttäen että ilman. Myös TTKK:lla suoritetut robottitestit on käyty läpi. Robottien testituloksia on analysoitu ja vertailtu muihin robotteihin. Testausmenetelmät perustuvat ISO 9283 standardiin. Viimeinen osa työstä esittelee robottijärjestelmien systemaattiseen suunnitteluun soveltuvia menetelmiä ja apuvälineitä. Esillä ovat mm. Modular function deployment (MFD) ja The system design method (SDM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the research is to define practical profit which can be achieved using neural network methods as a prediction instrument. The thesis investigates the ability of neural networks to forecast future events. This capability is checked on the example of price prediction during intraday trading on stock market. The executed experiments show predictions of average 1, 2, 5 and 10 minutes’ prices based on data of one day and made by two different types of forecasting systems. These systems are based on the recurrent neural networks and back propagation neural nets. The precision of the predictions is controlled by the absolute error and the error of market direction. The economical effectiveness is estimated by a special trading system. In conclusion, the best structures of neural nets are tested with data of 31 days’ interval. The best results of the average percent of profit from one transaction (buying + selling) are 0.06668654, 0.188299453, 0.349854787 and 0.453178626, they were achieved for prediction periods 1, 2, 5 and 10 minutes. The investigation can be interesting for the investors who have access to a fast information channel with a possibility of every-minute data refreshment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characterizing microcircuit motifs in intact nervous systems is essential to relate neural computations to behavior. In this issue of Neuron, Clowney et al. (2015) identify recurring, parallel feedforward excitatory and inhibitory pathways in male Drosophila's courtship circuitry, which might explain decisive mate choice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rationale Methylone, a new drug of abuse sold as"bath salts' has similar effects to ecstasy or cocaine. Objective We have investigated changes in dopaminergic and serotoninergic markers, indicative of neuronal damage, induced by methylone in the frontal cortex, hippocampus and striatum of mice and according two different treatment schedules. Methods Methylone was given subcutaneously to male Swiss CD1 mice and at an ambient temperature of 26ºC. Treatment A: three doses of 25 mg/Kg at 3.5 h interval between doses for two consecutive days. Treatment B: four doses of 25 mg/Kg at 3 h interval in one day. Results Repeated methylone administration induced hyperthermia and a significant loss in body weight. Following treatment A, methylone induced transient dopaminergic (frontal cortex) and serotoninergic (hippocampus) impairment. Following treatment B, transient dopaminergic (frontal cortex) and serotonergic (frontal cortex and hippocampus) changes 7 days after treatment were found. We found evidence of astrogliosis in the CA1 and the dentate gyrus of the hippocampus following treatment B. The animals also showed an increase in immobility time in the forced swim test, pointing to a depressive-like behavior. In cultured cortical neurons, methylone (for 24 and 48 h) did not induce a remarkable cytotoxic effect. Conclusions The neural effects of methylone differ depending upon the treatment schedule. Neurochemical changes elicited by methylone are apparent when administered at an elevated ambient temperature, four times per day at 3 h intervals, which is in accordance with its short half-life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.