846 resultados para Machinery -- Manufacturing processes


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Machining is one of the most commonly manufacturing processes used in the modern world, consuming millions of dollars annually. Because of this, it is crucial for the automotive industry to reduce costs on their heat-resistant alloy machining processes, such as compacted graphite iron (CGI), which has shown an increasing trend of its application in diesel engine blocks, brakes disks, among other applications, due to its superior mechanical properties to gray cast iron. Despite this advantage, its use is still limited due to its difficulty of machining, moreover, cutting tools are displayed as the main factor in increasing the machining cost. Seeking an alternative to a better machinability of CGI, this paper aims to study two types of ceramic tools developed in Brazil, and benchmark their performance by dry turning. For this, were used CGI class 450 and two tools: ceramic of silicon nitride (Si3N4) and alumina-based (Al2O3), with a cutting speed (Vc) of 300, 400 and 500 m / min; feed (f) of 0.2 mm / rev and depth of cut (ap) of 0.5 mm, using three replicates and starting with new cutting edges. The results showed that the Al2O3 tool had the best performance in Vc of 500 m / min, while the Si3N4 tool had the best results in Vc of 300 m / min. This can be explained by the tool of Si3N4 based include soft intergranular phase, called amorphous, while alumina has higher abrasion resistance due to its high refractoriness. The results make it clear that the tools have significant potential for machining of compacted graphite iron, being necessary a strict control of the cutting parameters used

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sustained demand for faster,more powerful chips has beenmet by the availability of chip manufacturing processes allowing for the integration of increasing numbers of computation units onto a single die. The resulting outcome, especially in the embedded domain, has often been called SYSTEM-ON-CHIP (SOC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MPSOC). MPSoC design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. NETWORKS-ON-CHIPS (NOCS) are the most comprehensive and scalable answer to this design concern. By bringing large-scale networking concepts to the on-chip domain, they guarantee a structured answer to present and future communication requirements. The point-to-point connection and packet switching paradigms they involve are also of great help in minimizing wiring overhead and physical routing issues. However, as with any technology of recent inception, NoC design is still an evolving discipline. Several main areas of interest require deep investigation for NoCs to become viable solutions: • The design of the NoC architecture needs to strike the best tradeoff among performance, features and the tight area and power constraints of the on-chip domain. • Simulation and verification infrastructure must be put in place to explore, validate and optimize the NoC performance. • NoCs offer a huge design space, thanks to their extreme customizability in terms of topology and architectural parameters. Design tools are needed to prune this space and pick the best solutions. • Even more so given their global, distributed nature, it is essential to evaluate the physical implementation of NoCs to evaluate their suitability for next-generation designs and their area and power costs. This dissertation focuses on all of the above points, by describing a NoC architectural implementation called ×pipes; a NoC simulation environment within a cycle-accurate MPSoC emulator called MPARM; a NoC design flow consisting of a front-end tool for optimal NoC instantiation, called SunFloor, and a set of back-end facilities for the study of NoC physical implementations. This dissertation proves the viability of NoCs for current and upcoming designs, by outlining their advantages (alongwith a fewtradeoffs) and by providing a full NoC implementation framework. It also presents some examples of additional extensions of NoCs, allowing e.g. for increased fault tolerance, and outlines where NoCsmay find further application scenarios, such as in stacked chips.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation concerns active fibre-reinforced composites with embedded shape memory alloy wires. The structural application of active materials allows to develop adaptive structures which actively respond to changes in the environment, such as morphing structures, self-healing structures and power harvesting devices. In particular, shape memory alloy actuators integrated within a composite actively control the structural shape or stiffness, thus influencing the composite static and dynamic properties. Envisaged applications include, among others, the prevention of thermal buckling of the outer skin of air vehicles, shape changes in panels for improved aerodynamic characteristics and the deployment of large space structures. The study and design of active composites is a complex and multidisciplinary topic, requiring in-depth understanding of both the coupled behaviour of active materials and the interaction between the different composite constituents. Both fibre-reinforced composites and shape memory alloys are extremely active research topics, whose modelling and experimental characterisation still present a number of open problems. Thus, while this dissertation focuses on active composites, some of the research results presented here can be usefully applied to traditional fibre-reinforced composites or other shape memory alloy applications. The dissertation is composed of four chapters. In the first chapter, active fibre-reinforced composites are introduced by giving an overview of the most common choices available for the reinforcement, matrix and production process, together with a brief introduction and classification of active materials. The second chapter presents a number of original contributions regarding the modelling of fibre-reinforced composites. Different two-dimensional laminate theories are derived from a parent three-dimensional theory, introducing a procedure for the a posteriori reconstruction of transverse stresses along the laminate thickness. Accurate through the thickness stresses are crucial for the composite modelling as they are responsible for some common failure mechanisms. A new finite element based on the First-order Shear Deformation Theory and a hybrid stress approach is proposed for the numerical solution of the two-dimensional laminate problem. The element is simple and computationally efficient. The transverse stresses through the laminate thickness are reconstructed starting from a general finite element solution. A two stages procedure is devised, based on Recovery by Compatibility in Patches and three-dimensional equilibrium. Finally, the determination of the elastic parameters of laminated structures via numerical-experimental Bayesian techniques is investigated. Two different estimators are analysed and compared, leading to the definition of an alternative procedure to improve convergence of the estimation process. The third chapter focuses on shape memory alloys, describing their properties and applications. A number of constitutive models proposed in the literature, both one-dimensional and three-dimensional, are critically discussed and compared, underlining their potential and limitations, which are mainly related to the definition of the phase diagram and the choice of internal variables. Some new experimental results on shape memory alloy material characterisation are also presented. These experimental observations display some features of the shape memory alloy behaviour which are generally not included in the current models, thus some ideas are proposed for the development of a new constitutive model. The fourth chapter, finally, focuses on active composite plates with embedded shape memory alloy wires. A number of di®erent approaches can be used to predict the behaviour of such structures, each model presenting different advantages and drawbacks related to complexity and versatility. A simple model able to describe both shape and stiffness control configurations within the same context is proposed and implemented. The model is then validated considering the shape control configuration, which is the most sensitive to model parameters. The experimental work is divided in two parts. In the first part, an active composite is built by gluing prestrained shape memory alloy wires on a carbon fibre laminate strip. This structure is relatively simple to build, however it is useful in order to experimentally demonstrate the feasibility of the concept proposed in the first part of the chapter. In the second part, the making of a fibre-reinforced composite with embedded shape memory alloy wires is investigated, considering different possible choices of materials and manufacturing processes. Although a number of technological issues still need to be faced, the experimental results allow to demonstrate the mechanism of shape control via embedded shape memory alloy wires, while showing a good agreement with the proposed model predictions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN]The continuous evolution of materials and technologies of Additive Manufacturing (AM) has led to a competitive production process even for functional parts. The capabilities of these technologies for manufacturing complex geometries allow the definition of new designs that cannot be obtained with any other manufacturing processes. An application where this capability can be exploited is the lightening of parts using internal structures. This allows to obtain more efficient parts and, at the same time, reduce the costs of material and manufacturing time. A new lightweight optimization method to optimize the design of these structures and minimize weight while keeping the minimal mechanical properties is presented in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN]This work is part of a methodological renovation project from Ingeniería de Fabricación Innovative Education Group, from University of Las Palmas de Gran Canaria. It has developed learning materials for courses in Manufacturing Engineering that can be used in several degrees. The first learning material, it was decided to take a plastic injection mould as a teaching resource. Abundant information generated has been used to develop an interactive electronic publication. This learning material has been chosen by the Publishing and Scientific Diffusion Service from this University, as a new line of work in publications of educational innovation. The group is developing more training materials on other manufacturing processes as well as cross-contents dimensional tolerances in the ISO GPS system. All this work has generated a lot of educational resources for both laboratory practices and interactive multimedia documents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, mixed systems composed of SDS in the presence of neutral cyclodextrins were considered. Firstly, the effect of the CDs on the CMC of the surfactant was evaluated by CE experiments. Furthermore, a new CE approach based on electric current measurement was developed for the estimation of the stoichiometry as well as of the binding constants of SDS-CDs complexes. The results of these investigations were compared to those obtained with a different technique, electronic paramagnetic resonance (EPR). The obtained results suggested that methylated CDs, in particular (2,6-di-O-methyl)-beta-cyclodextrin (DM-beta-CD), strongly affect the micellization of SDS in comparison to the other studied CDs. This effect also paralleled the chiral CD-MEKC performance, as indicated by the enantioresolution of (+/-)-Catechin, which was firstly selected as a model compound representative of important chiral phytomarkers. Then a CD-MEKC system, composed of sodium dodecyl sulfate as surfactant (90 mM) and hydroxypropyl-beta-cyclodextrin (25 mM) as chiral selector, under acidic conditions (25 mM borate – phosphate buffer, pH 2.5) was applied to study the thermal epimerisation of epi-structured catechins, (-)-Epicatechin and (-)-Epigallocatechin, to non epi-structured (-)-Catechin and (-)-Gallocatechin. The latter compounds, being non-native molecules, were for the first time regarded as useful phytomarkers of tea sample degradation. The proposed method was applied to the analysis of more than twenty tea samples of different geographical origins (China, Japan, Ceylon), having undergone different storage conditions and manufacturing processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the past sixty years, waveguide slot radiator arrays have played a critical role in microwave radar and communication systems. They feature a well-characterized antenna element capable of direct integration into a low-loss feed structure with highly developed and inexpensive manufacturing processes. Waveguide slot radiators comprise some of the highest performance—in terms of side-lobe-level, efficiency, etc. — antenna arrays ever constructed. A wealth of information is available in the open literature regarding design procedures for linearly polarized waveguide slots. By contrast, despite their presence in some of the earliest published reports, little has been presented to date on array designs for circularly polarized (CP) waveguide slots. Moreover, that which has been presented features a classic traveling wave, efficiency-reducing beam tilt. This work proposes a unique CP waveguide slot architecture which mitigates these problems and a thorough design procedure employing widely available, modern computational tools. The proposed array topology features simultaneous dual-CP operation with grating-lobe-free, broadside radiation, high aperture efficiency, and good return loss. A traditional X-Slot CP element is employed with the inclusion of a slow wave structure passive phase shifter to ensure broadside radiation without the need for performance-limiting dielectric loading. It is anticipated this technology will be advantageous for upcoming polarimetric radar and Ka-band SatCom systems. The presented design methodology represents a philosophical shift away from traditional waveguide slot radiator design practices. Rather than providing design curves and/or analytical expressions for equivalent circuit models, simple first-order design rules – generated via parametric studies — are presented with the understanding that device optimization and design will be carried out computationally. A unit-cell, S-parameter based approach provides a sufficient reduction of complexity to permit efficient, accurate device design with attention to realistic, application-specific mechanical tolerances. A transparent, start-to-finish example of the design procedure for a linear sub-array at X-Band is presented. Both unit cell and array performance is calculated via finite element method simulations. Results are confirmed via good agreement with finite difference, time domain calculations. Array performance exhibiting grating-lobe-free, broadside-scanned, dual-CP radiation with better than 20 dB return loss and over 75% aperture efficiency is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As the demand for miniature products and components continues to increase, the need for manufacturing processes to provide these products and components has also increased. To meet this need, successful macroscale processes are being scaled down and applied at the microscale. Unfortunately, many challenges have been experienced when directly scaling down macro processes. Initially, frictional effects were believed to be the largest challenge encountered. However, in recent studies it has been found that the greatest challenge encountered has been with size effects. Size effect is a broad term that largely refers to the thickness of the material being formed and how this thickness directly affects the product dimensions and manufacturability. At the microscale, the thickness becomes critical due to the reduced number of grains. When surface contact between the forming tools and the material blanks occur at the macroscale, there is enough material (hundreds of layers of material grains) across the blank thickness to compensate for material flow and the effect of grain orientation. At the microscale, there may be under 10 grains across the blank thickness. With a decreased amount of grains across the thickness, the influence of the grain size, shape and orientation is significant. Any material defects (either natural occurring or ones that occur as a result of the material preparation) have a significant role in altering the forming potential. To date, various micro metal forming and micro materials testing equipment setups have been constructed at the Michigan Tech lab. Initially, the research focus was to create a micro deep drawing setup to potentially build micro sensor encapsulation housings. The research focus shifted to micro metal materials testing equipment setups. These include the construction and testing of the following setups: a micro mechanical bulge test, a micro sheet tension test (testing micro tensile bars), a micro strain analysis (with the use of optical lithography and chemical etching) and a micro sheet hydroforming bulge test. Recently, the focus has shifted to study a micro tube hydroforming process. The intent is to target fuel cells, medical, and sensor encapsulation applications. While the tube hydroforming process is widely understood at the macroscale, the microscale process also offers some significant challenges in terms of size effects. Current work is being conducted in applying direct current to enhance micro tube hydroforming formability. Initially, adding direct current to various metal forming operations has shown some phenomenal results. The focus of current research is to determine the validity of this process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inductive-capacitive (LC) resonant circuit sensors are low-cost, wireless, durable, simple to fabricate and battery-less. Consequently, they are well suited to sensing applications in harsh environments or in situations where large numbers of sensors are needed. They are also advantageous in applications where access to the sensor is limited or impossible or when sensors are needed on a disposable basis. Due to their many advantages, LC sensors have been used for sensing a variety of parameters including humidity, temperature, chemical concentrations, pH, stress/pressure, strain, food quality and even biological growth. However, current versions of the LC sensor technology are limited to sensing only one parameter. The purpose of this work is to develop new types of LC sensor systems that are simpler to fabricate (hence lower cost) or capable of monitoring multiple parameters simultaneously. One design presented in this work, referred to as the multi-element LC sensor, is able to measure multiple parameters simultaneously using a second capacitive element. Compared to conventional LC sensors, this design can sense multiple parameters with a higher detection range than two independent sensors while maintaining the same overall sensor footprint. In addition, the two-element sensor does not suffer from interference issues normally encountered while implementing two LC sensors in close proximity. Another design, the single-spiral inductive-capacitive sensor, utilizes the parasitic capacitance of a coil or spring structure to form a single layer LC resonant circuit. Unlike conventional LC sensors, this design is truly planar, thus simplifying its fabrication process and reducing sensor cost. Due to the simplicity of this sensor layout it will be easier and more cost-effective for embedding in common building or packaging materials during manufacturing processes, thereby adding functionality to current products (such as drywall sheets) while having a minor impact on overall unit cost. These modifications to the LC sensor design significantly improve the functionality and commercial feasibility of this technology, especially for applications where a large array of sensors or multiple sensing parameters are required.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Viral infections account for over 13 million deaths per year. Antiviral drugs and vaccines are the most effective method to treat viral diseases. Antiviral compounds have revolutionized the treatment of AIDS, and reduced the mortality rate. However, this disease still causes a large number of deaths in developing countries that lack these types of drugs. Vaccination is the most effective method to treat viral disease; vaccines prevent around 2.5 million deaths per year. Vaccines are not able to offer full coverage due to high operational costs in the manufacturing processes. Although vaccines have saved millions of lives, conventional vaccines often offer reactogenic effects. New technologies have been created to eliminate the undesired side effects. However, new vaccines are less immunogenic and adjuvants such as vaccine delivery vehicles are required. This work focuses on the discovery of new natural antivirals that can reduce the high cost and side effects of synthetic drugs. We discovered that two osmolytes, trimethylamine N-oxide (TMAO) and glycine reduce the infectivity of a model virus, porcine parvovirus (PPV), by 4 LRV (99.99%), likely by disruption of capsid assembly. These osmolytes have the potential to be used as drugs, since they showed antiviral activity after 20 h. We have also focused on improving current vaccine manufacturing processes that will allow fast, effective and economical vaccines to be produced worldwide. We propose virus flocculation in osmolytes followed by microfiltration as an economical alternative for vaccine manufacturing. Osmolytes are able to specifically flocculate hydrophobic virus particles by depleting a hydration layer around the particles and subsequently cause virus aggregation. The osmolyte mannitol was able to flocculate virus particles, and demonstrate a high virus removal, 81% for PPV and 98.1% for Sindbis virus (SVHR). Virus flocculation with mannitol, followed by microfiltration could be used as a platform process for virus purification. Finally, we perform biocompatibility studies on soft-templated mesoporous carbon materials with the aim of using these materials as vaccine delivery vehicles. We discovered that these materials are biocompatible, and the degree of biocompatibility is within the range of other biomaterials currently employed in biomedical applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

„Geiz ist geil!“ ist das Motto eines Handelshauses. Aber diese Philosophie erweist sich immer häufiger als ungeeignet, längerfristigen Erfolg zu sichern. Oftmals wird gerade aus diesem Grund wieder verstärkt auf Qualität geachtet, auf die Qualität von Produkten, auf die Qualität von Herstellungsprozessen, auf die Qualität von Logistikprozessen etc. Dieser Sinneswandel beeinflusst auch alle Verpackungsprozesse, da diese untrennbar mit der Sicherung der Produktqualität und der sicheren Abwicklung aller logistischen Prozesse verbunden ist. Neben der Forderung nach einem wirtschaftlichen Produktschutz als Kernaufgabe der Verpackung müssen jedoch auch zwingende Vorgaben – beispielsweise seitens des Gesetzgebers (z. B. im Lebensmittelbereich, in der Gefahrgutlogistik, im Straßenverkehrsrecht) – beachtet werden. Das führt u. a. dazu, dass alle verpackten Güter so geschützt sein sollten, dass sie den Belastungen im Transportprozess, aber auch den Belastungen aufgrund von Ladungs- und Ladeeinheitensicherungsmaßnahmen standhalten können. Da sich jedoch nicht alle Ladegüter oder Packstücke beliebig für form- oder kraftschlüssige Sicherungsmaßnahmen eignen, sollte bei der Auslegung von Verpackungsmaßnahmen insbesondere der hilfreichen Wirkung von Reibungskräften zur Reduzierung zusätzlicher Sicherungsmaßnahmen Aufmerksamkeit gewidmet werden.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

„Geiz ist geil!“ ist das Motto eines Handelshauses. Aber diese Philosophie erweist sich immer häufiger als ungeeignet, längerfristigen Erfolg zu sichern. Oftmals wird gerade aus diesem Grund wieder verstärkt auf Qualität geachtet, auf die Qualität von Produkten, auf die Qualität von Herstellungsprozessen, auf die Qualität von Logistikprozessen etc. Dieser Sinneswandel beeinflusst auch alle Verpackungsprozesse, da diese untrennbar mit der Sicherung der Produktqualität und der sicheren Abwicklung aller logistischen Prozesse verbunden ist. Neben der Forderung nach einem wirtschaftlichen Produktschutz als Kernaufgabe der Verpackung müssen jedoch auch zwingende Vorgaben – beispielsweise seitens des Gesetzgebers (z. B. im Lebensmittelbereich, in der Gefahrgutlogistik, im Straßenverkehrsrecht) – beachtet werden. Das führt u. a. dazu, dass alle verpackten Güter so geschützt sein sollten, dass sie den Belastungen im Transportprozess, aber auch den Belastungen aufgrund von Ladungs- und Ladeeinheitensicherungsmaßnahmen standhalten können. Da sich jedoch nicht alle Ladegüter oder Packstücke beliebig für form- oder kraftschlüssige Sicherungsmaßnahmen eignen, sollte bei der Auslegung von Verpackungsmaßnahmen insbesondere der hilfreichen Wirkung von Reibungskräften zur Reduzierung zusätzlicher Sicherungsmaßnahmen Aufmerksamkeit gewidmet werden.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Moderne generische Fertigungsverfahren für innengekühlte Werkzeuge bieten nahezu beliebige Freiheitsgrade zur Gestaltung konturnaher Kühlkanäle. Daraus resultiert ein erhöhter Anspruch an das Werkzeugengineering und die Optimierung der Kühlleistung. Geeignete Simulationsverfahren (wie z.B. Computational Fluid Dynamics - CFD) unterstützen die optimierte Werkzeugauslegung in idealer Weise. Mit der Erstellung virtueller Teststände können Varianten effizient und kostengünstig verglichen und die Kosten für Prototypen und Nacharbeiten reduziert werden. Im Computermodell des Werkzeugs erlauben Soft-Sensoren an beliebiger Position die Überwachung temperatur-kritischer Stellen sowohl im Fluid- als auch im Solidbereich. Der hier durchgeführte Benchmark vergleicht die Performance eines optimierten Werkzeugeinsatzes mit einer konventionellen Kühlung. Die im virtuellen Prozess vorhergesagte Zykluszeitreduzierung steht in guter Übereinstimmung mit realen Experimenten an den ausgeführten Werkzeugen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mit der Entwicklung der losgrößenunabhängigen, additiven Fertigungsverfahren eröffnen sich vollkommen neue Wege zur Realisierung von komplexen Integralbauteilen bei niedrigen Stückzahlen. Bei der Bauteilgestaltung müssen (verglichen mit traditionellen Herstellverfahren, beispielsweise Spritzgießen) weniger Fertigungsrestriktionen beachtet werden. Dennoch ist die Gestaltungsfreiheit nicht unbegrenzt. In diesem Beitrag werden basierend auf dem Gedanken des Fertigungsgerechten Konstruierens Möglichkeiten und Herausforderungen bei der Gestaltung von additiv gefertigten Bauteilen herausgestellt. Darauf aufbauend werden Potenziale aufgezeigt, wie Produktentwickler in Zukunft bei der Auslegung und Gestaltung solcher Produkte unterstützt werden können.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Technische Produktionssysteme und Prozesse - welcher Technologie auch immer - müssen den Bedürfnissen der industriellen Bauteilherstellung für Endanwendungen im Automobilbau entsprechen. Es stellt sich zunächst die Frage, auf welchem technologischen Reifegrad sich die generativen Technologien für den Automobilbau derzeit befinden? Welche außerordentlichen Vorteile können generative Prozessketten gegenüber konventionellen Herstellungsverfahren bieten und welche Hürden müssen genommen werden? Im Vordergrund der Untersuchung steht die Betrachtung von Pre-, In- und Post-Prozessen generativer wie auch konventioneller Produktionsverfahren. Bei der Gegenüberstellung der Prozessketten werden Maßstäbe angesetzt, die derzeit bei der Bauteilherstellung im Automobilbau Gültigkeit haben und auf Kriterien wie Effizienz, Reproduzierbarkeit und Kontrollierbarkeit aufbauen. Schließlich findet eine Einschätzung aus der Perspektive der Technologieintegration in derzeitige Produktionssysteme und Lieferketten statt. Es werden Restriktionen und Handlungsfelder von generativen Prozessen deutlich, die für den Einsatz für Endkunden-Bauteile im Fahrzeugbau behandelt werden müssen.