976 resultados para Linked Open Data Android iOS Semantic Web Turismo Tourism
Resumo:
Postprint
Resumo:
In parallel to the effort of creating Open Linked Data for the World Wide Web there is a number of projects aimed for developing the same technologies but in the context of their usage in closed environments such as private enterprises. In the paper, we present results of research on interlinking structured data for use in Idea Management Systems - a still rare breed of knowledge management systems dedicated to innovation management. In our study, we show the process of extending an ontology that initially covers only the Idea Management System structure towards the concept of linking with distributed enterprise data and public data using Semantic Web technologies. Furthermore we point out how the established links can help to solve the key problems of contemporary Idea Management Systems
Resumo:
Language resources, such as multilingual lexica and multilingual electronic dictionaries, contain collections of lexical entries in several languages. Having access to the corresponding explicit or implicit translation relations between such entries might be of great interest for many NLP-based applications. By using Semantic Web-based techniques, translations can be available on the Web to be consumed by other (semantic enabled) resources in a direct manner, not relying on application-specific formats. To that end, in this paper we propose a model for representing translations as linked data, as an extension of the lemon model. Our translation module represents some core information associated to term translations and does not commit to specific views or translation theories. As a proof of concept, we have extracted the translations of the terms contained in Terminesp, a multilingual terminological database, and represented them as linked data. We have made them accessible on the Web both for humans (via a Web interface) and software agents (with a SPARQL endpoint).
Resumo:
The Web of Data currently comprises ? 62 billion triples from more than 2,000 different datasets covering many fields of knowledge3. This volume of structured Linked Data can be seen as a particular case of Big Data, referred to as Big Semantic Data [4]. Obviously, powerful computational configurations are tradi- tionally required to deal with the scalability problems arising to Big Semantic Data. It is not surprising that this ?data revolution? has competed in parallel with the growth of mobile computing. Smartphones and tablets are massively used at the expense of traditional computers but, to date, mobile devices have more limited computation resources. Therefore, one question that we may ask ourselves would be: can (potentially large) semantic datasets be consumed natively on mobile devices? Currently, only a few mobile apps (e.g., [1, 9, 2, 8]) make use of semantic data that they store in the mobile devices, while many others access existing SPARQL endpoints or Linked Data directly. Two main reasons can be considered for this fact. On the one hand, in spite of some initial approaches [6, 3], there are no well-established triplestores for mobile devices. This is an important limitation because any po- tential app must assume both RDF storage and SPARQL resolution. On the other hand, the particular features of these devices (little storage space, less computational power or more limited bandwidths) limit the adoption of seman- tic data for different uses and purposes. This paper introduces our HDTourist mobile application prototype. It con- sumes urban data from DBpedia4 to help tourists visiting a foreign city. Although it is a simple app, its functionality allows illustrating how semantic data can be stored and queried with limited resources. Our prototype is implemented for An- droid, but its foundations, explained in Section 2, can be deployed in any other platform. The app is described in Section 3, and Section 4 concludes about our current achievements and devises the future work.
Resumo:
Postprint
Resumo:
Linked Data semantic sources, in particular DBpedia, can be used to answer many user queries. PowerAqua is an open multi-ontology Question Answering (QA) system for the Semantic Web (SW). However, the emergence of Linked Data, characterized by its openness, heterogeneity and scale, introduces a new dimension to the Semantic Web scenario, in which exploiting the relevant information to extract answers for Natural Language (NL) user queries is a major challenge. In this paper we discuss the issues and lessons learned from our experience of integrating PowerAqua as a front-end for DBpedia and a subset of Linked Data sources. As such, we go one step beyond the state of the art on end-users interfaces for Linked Data by introducing mapping and fusion techniques needed to translate a user query by means of multiple sources. Our first informal experiments probe whether, in fact, it is feasible to obtain answers to user queries by composing information across semantic sources and Linked Data, even in its current form, where the strength of Linked Data is more a by-product of its size than its quality. We believe our experiences can be extrapolated to a variety of end-user applications that wish to scale, open up, exploit and re-use what possibly is the greatest wealth of data about everything in the history of Artificial Intelligence. © 2010 Springer-Verlag.
Resumo:
Open educational resources (OER) promise increased access, participation, quality, and relevance, in addition to cost reduction. These seemingly fantastic promises are based on the supposition that educators and learners will discover existing resources, improve them, and share the results, resulting in a virtuous cycle of improvement and re-use. By anecdotal metrics, existing web scale search is not working for OER. This situation impairs the cycle underlying the promise of OER, endangering long term growth and sustainability. While the scope of the problem is vast, targeted improvements in areas of curation, indexing, and data exchange can improve the situation, and create opportunities for further scale. I explore the way the system is currently inadequate, discuss areas for targeted improvement, and describe a prototype system built to test these ideas. I conclude with suggestions for further exploration and development.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Introduction to Linked Data and Semantic Web for data scientists
Resumo:
Ontology design and population -core aspects of semantic technologies- re- cently have become fields of great interest due to the increasing need of domain-specific knowledge bases that can boost the use of Semantic Web. For building such knowledge resources, the state of the art tools for ontology design require a lot of human work. Producing meaningful schemas and populating them with domain-specific data is in fact a very difficult and time-consuming task. Even more if the task consists in modelling knowledge at a web scale. The primary aim of this work is to investigate a novel and flexible method- ology for automatically learning ontology from textual data, lightening the human workload required for conceptualizing domain-specific knowledge and populating an extracted schema with real data, speeding up the whole ontology production process. Here computational linguistics plays a fundamental role, from automati- cally identifying facts from natural language and extracting frame of relations among recognized entities, to producing linked data with which extending existing knowledge bases or creating new ones. In the state of the art, automatic ontology learning systems are mainly based on plain-pipelined linguistics classifiers performing tasks such as Named Entity recognition, Entity resolution, Taxonomy and Relation extraction [11]. These approaches present some weaknesses, specially in capturing struc- tures through which the meaning of complex concepts is expressed [24]. Humans, in fact, tend to organize knowledge in well-defined patterns, which include participant entities and meaningful relations linking entities with each other. In literature, these structures have been called Semantic Frames by Fill- 6 Introduction more [20], or more recently as Knowledge Patterns [23]. Some NLP studies has recently shown the possibility of performing more accurate deep parsing with the ability of logically understanding the structure of discourse [7]. In this work, some of these technologies have been investigated and em- ployed to produce accurate ontology schemas. The long-term goal is to collect large amounts of semantically structured information from the web of crowds, through an automated process, in order to identify and investigate the cognitive patterns used by human to organize their knowledge.
Resumo:
La capacità di estrarre entità da testi, collegarle tra loro ed eliminare possibili ambiguità tra di esse è uno degli obiettivi del Web Semantico. Chiamato anche Web 3.0, esso presenta numerose innovazioni volte ad arricchire il Web con dati strutturati comprensibili sia dagli umani che dai calcolatori. Nel reperimento di questi temini e nella definizione delle entities è di fondamentale importanza la loro univocità. Il nostro orizzonte di lavoro è quello delle università italiane e le entities che vogliamo estrarre, collegare e rendere univoche sono nomi di professori italiani. L’insieme di informazioni di partenza, per sua natura, vede la presenza di ambiguità. Attenendoci il più possibile alla sua semantica, abbiamo studiato questi dati ed abbiamo risolto le collisioni presenti sui nomi dei professori. Arald, la nostra architettura software per il Web Semantico, estrae entità e le collega, ma soprattutto risolve ambiguità e omonimie tra i professori delle università italiane. Per farlo si appoggia alla semantica dei loro lavori accademici e alla rete di coautori desumibile dagli articoli da loro pubblicati, rappresentati tramite un data cluster. In questo docu delle università italiane e le entities che vogliamo estrarre, collegare e rendere univoche sono nomi di professori italiani. Partendo da un insieme di informazioni che, per sua natura, vede la presenza di ambiguità, lo abbiamo studiato attenendoci il più possibile alla sua semantica, ed abbiamo risolto le collisioni che accadevano sui nomi dei professori. Arald, la nostra architettura software per il Web Semantico, estrae entità, le collega, ma soprattutto risolve ambiguità e omonimie tra i professori delle università italiane. Per farlo si appoggia alla semantica dei loro lavori accademici e alla rete di coautori desumibile dagli articoli da loro pubblicati tramite la costruzione di un data cluster.