891 resultados para Linear and multilinear programming
Resumo:
The multiobjective optimization model studied in this paper deals with simultaneous minimization of finitely many linear functions subject to an arbitrary number of uncertain linear constraints. We first provide a radius of robust feasibility guaranteeing the feasibility of the robust counterpart under affine data parametrization. We then establish dual characterizations of robust solutions of our model that are immunized against data uncertainty by way of characterizing corresponding solutions of robust counterpart of the model. Consequently, we present robust duality theorems relating the value of the robust model with the corresponding value of its dual problem.
Resumo:
Linear models reach their limitations in applications with nonlinearities in the data. In this paper new empirical evidence is provided on the relative Euro inflation forecasting performance of linear and non-linear models. The well established and widely used univariate ARIMA and multivariate VAR models are used as linear forecasting models whereas neural networks (NN) are used as non-linear forecasting models. It is endeavoured to keep the level of subjectivity in the NN building process to a minimum in an attempt to exploit the full potentials of the NN. It is also investigated whether the historically poor performance of the theoretically superior measure of the monetary services flow, Divisia, relative to the traditional Simple Sum measure could be attributed to a certain extent to the evaluation of these indices within a linear framework. Results obtained suggest that non-linear models provide better within-sample and out-of-sample forecasts and linear models are simply a subset of them. The Divisia index also outperforms the Simple Sum index when evaluated in a non-linear framework. © 2005 Taylor & Francis Group Ltd.
Resumo:
Бойко Бл. Банчев - Представена е обосновка и описание на език за програмиране в композиционен стил за опитни и учебни цели. Под “композиционен” имаме предвид функционален стил на програмиране, при който пресмятането е йерархия от композиции и прилагания на функции. Един от данновите типове на езика е този на геометричните фигури, които могат да бъдат получавани чрез прости правила за съотнасяне и така също образуват йерархични композиции. Езикът е силно повлиян от GeomLab, но по редица свойства се различава от него значително. Статията разглежда основните черти на езика; подробното му описание и фигурноконструктивните му възможности ще бъдат представени в съпътстваща публикация.
Resumo:
We present new methodologies to generate rational function approximations of broadband electromagnetic responses of linear and passive networks of high-speed interconnects, and to construct SPICE-compatible, equivalent circuit representations of the generated rational functions. These new methodologies are driven by the desire to improve the computational efficiency of the rational function fitting process, and to ensure enhanced accuracy of the generated rational function interpolation and its equivalent circuit representation. Toward this goal, we propose two new methodologies for rational function approximation of high-speed interconnect network responses. The first one relies on the use of both time-domain and frequency-domain data, obtained either through measurement or numerical simulation, to generate a rational function representation that extrapolates the input, early-time transient response data to late-time response while at the same time providing a means to both interpolate and extrapolate the used frequency-domain data. The aforementioned hybrid methodology can be considered as a generalization of the frequency-domain rational function fitting utilizing frequency-domain response data only, and the time-domain rational function fitting utilizing transient response data only. In this context, a guideline is proposed for estimating the order of the rational function approximation from transient data. The availability of such an estimate expedites the time-domain rational function fitting process. The second approach relies on the extraction of the delay associated with causal electromagnetic responses of interconnect systems to provide for a more stable rational function process utilizing a lower-order rational function interpolation. A distinctive feature of the proposed methodology is its utilization of scattering parameters. For both methodologies, the approach of fitting the electromagnetic network matrix one element at a time is applied. It is shown that, with regard to the computational cost of the rational function fitting process, such an element-by-element rational function fitting is more advantageous than full matrix fitting for systems with a large number of ports. Despite the disadvantage that different sets of poles are used in the rational function of different elements in the network matrix, such an approach provides for improved accuracy in the fitting of network matrices of systems characterized by both strongly coupled and weakly coupled ports. Finally, in order to provide a means for enforcing passivity in the adopted element-by-element rational function fitting approach, the methodology for passivity enforcement via quadratic programming is modified appropriately for this purpose and demonstrated in the context of element-by-element rational function fitting of the admittance matrix of an electromagnetic multiport.
Resumo:
Information Retrieval is an important albeit imperfect component of information technologies. A problem of insufficient diversity of retrieved documents is one of the primary issues studied in this research. This study shows that this problem leads to a decrease of precision and recall, traditional measures of information retrieval effectiveness. This thesis presents an adaptive IR system based on the theory of adaptive dual control. The aim of the approach is the optimization of retrieval precision after all feedback has been issued. This is done by increasing the diversity of retrieved documents. This study shows that the value of recall reflects this diversity. The Probability Ranking Principle is viewed in the literature as the “bedrock” of current probabilistic Information Retrieval theory. Neither the proposed approach nor other methods of diversification of retrieved documents from the literature conform to this principle. This study shows by counterexample that the Probability Ranking Principle does not in general lead to optimal precision in a search session with feedback (for which it may not have been designed but is actively used). Retrieval precision of the search session should be optimized with a multistage stochastic programming model to accomplish the aim. However, such models are computationally intractable. Therefore, approximate linear multistage stochastic programming models are derived in this study, where the multistage improvement of the probability distribution is modelled using the proposed feedback correctness method. The proposed optimization models are based on several assumptions, starting with the assumption that Information Retrieval is conducted in units of topics. The use of clusters is the primary reasons why a new method of probability estimation is proposed. The adaptive dual control of topic-based IR system was evaluated in a series of experiments conducted on the Reuters, Wikipedia and TREC collections of documents. The Wikipedia experiment revealed that the dual control feedback mechanism improves precision and S-recall when all the underlying assumptions are satisfied. In the TREC experiment, this feedback mechanism was compared to a state-of-the-art adaptive IR system based on BM-25 term weighting and the Rocchio relevance feedback algorithm. The baseline system exhibited better effectiveness than the cluster-based optimization model of ADTIR. The main reason for this was insufficient quality of the generated clusters in the TREC collection that violated the underlying assumption.
Resumo:
The study described in this paper developed a model of animal movement, which explicitly recognised each individual as the central unit of measure. The model was developed by learning from a real dataset that measured and calculated, for individual cows in a herd, their linear and angular positions and directional and angular speeds. Two learning algorithms were implemented: a Hidden Markov model (HMM) and a long-term prediction algorithm. It is shown that a HMM can be used to describe the animal's movement and state transition behaviour within several “stay” areas where cows remained for long periods. Model parameters were estimated for hidden behaviour states such as relocating, foraging and bedding. For cows’ movement between the “stay” areas a long-term prediction algorithm was implemented. By combining these two algorithms it was possible to develop a successful model, which achieved similar results to the animal behaviour data collected. This modelling methodology could easily be applied to interactions of other animal species.
Resumo:
Social capital plays an important role in explaining how value is created from firms' network relationships, but little is understood about how social capital is shaped over time and how it is re-shaped when firms consolidate their network ties. In response, this study explores the evolution of social capital in buyer–supplier relationships through a case study of a company undertaking radical product innovation, and examines the corresponding changes in the firm's network of buyer–supplier relationships. The analysis shows that social capital is built in a decidedly non-linear and non-uniform manner. The study also reveals considerable interaction among the dimensions of social capital throughout the evolution of the firm's network, and emphasizes the importance of the cognitive dimension—a feature receiving little attention thus far. The evidence shows, too, that efforts to strengthen social capital need to increase when network ties are sacrificed to prevent unintended consequences for firms' longer-term value creation.
Resumo:
We present three competing predictions of the organizational gender diversity-performance relationship: a positive linear prediction, a negative linear prediction, and an inverted U-shaped curvilinear prediction. The paper also proposes a moderating effect of industry type (services vs. manufacturing). The predictions were tested using archival quantitative data with a longitudinal design. The results show partial support for the positive linear and inverted U-shaped curvilinear predictions as well as for the proposed moderating effect of industry type. The results help reconcile the inconsistent findings of past research. The findings also show that industry context can strengthen or weaken gender diversity effects.
Resumo:
Empirical findings on the link between gender diversity and performance have been inconsistent. This paper presents three competing predictions of the organizational gender diversity-performance relationship: a positive linear prediction derived from the resource-based view of the firm, a negative linear prediction derived from self-categorization and social identity theories, and an inverted U-shaped curvilinear prediction derived from the integration of the resource-based view of the firm with self-categorization and social identity theories. This paper also proposes a moderating effect of industry type (services vs. manufacturing) on the gender diversity-performance relationship. The predictions were tested in publicly listed Australian organizations using archival quantitative data with a longitudinal research design. The results show partial support for the positive linear and inverted U-shaped curvilinear predictions as well as for the proposed moderating effect of industry type. The curvilinear relationship indicates that different proportions of organizational gender diversity have different effects on organizational performance, which may be attributed to different dynamics as suggested by the resource-based view and self-categorization and social identity theories. The results help reconcile the inconsistent findings of past research that focused on the linear gender diversity-performance relationship. The findings also show that industry context can strengthen or weaken the effects of organizational gender diversity on performance.
Resumo:
Asset health inspections can produce two types of indicators: (1) direct indicators (e.g. the thickness of a brake pad, and the crack depth on a gear) which directly relate to a failure mechanism; and (2) indirect indicators (e.g. the indicators extracted from vibration signals and oil analysis data) which can only partially reveal a failure mechanism. While direct indicators enable more precise references to asset health condition, they are often more difficult to obtain than indirect indicators. The state space model provides an efficient approach to estimating direct indicators by using indirect indicators. However, existing state space models to estimate direct indicators largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires fixed inspection intervals. The discrete state assumption entails discretising continuous degradation indicators, which often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This paper proposes a state space model without these assumptions. Monte Carlo-based algorithms are developed to estimate the model parameters and the remaining useful life. These algorithms are evaluated for performance using numerical simulations through MATLAB. The result shows that both the parameters and the remaining useful life are estimated accurately. Finally, the new state space model is used to process vibration and crack depth data from an accelerated test of a gearbox. During this application, the new state space model shows a better fitness result than the state space model with linear and Gaussian assumption.
Resumo:
The Electrocardiogram (ECG) is an important bio-signal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. The HRV signal can be used as a base signal to observe the heart's functioning. These signals are non-linear and non-stationary in nature. So, higher order spectral (HOS) analysis, which is more suitable for non-linear systems and is robust to noise, was used. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, we have extracted seven features from the heart rate signals using HOS and fed them to a support vector machine (SVM) for classification. Our performance evaluation protocol uses 330 subjects consisting of five different kinds of cardiac disease conditions. We demonstrate a sensitivity of 90% for the classifier with a specificity of 87.93%. Our system is ready to run on larger data sets.
Resumo:
Log-linear and maximum-margin models are two commonly-used methods in supervised machine learning, and are frequently used in structured prediction problems. Efficient learning of parameters in these models is therefore an important problem, and becomes a key factor when learning from very large data sets. This paper describes exponentiated gradient (EG) algorithms for training such models, where EG updates are applied to the convex dual of either the log-linear or max-margin objective function; the dual in both the log-linear and max-margin cases corresponds to minimizing a convex function with simplex constraints. We study both batch and online variants of the algorithm, and provide rates of convergence for both cases. In the max-margin case, O(1/ε) EG updates are required to reach a given accuracy ε in the dual; in contrast, for log-linear models only O(log(1/ε)) updates are required. For both the max-margin and log-linear cases, our bounds suggest that the online EG algorithm requires a factor of n less computation to reach a desired accuracy than the batch EG algorithm, where n is the number of training examples. Our experiments confirm that the online algorithms are much faster than the batch algorithms in practice. We describe how the EG updates factor in a convenient way for structured prediction problems, allowing the algorithms to be efficiently applied to problems such as sequence learning or natural language parsing. We perform extensive evaluation of the algorithms, comparing them to L-BFGS and stochastic gradient descent for log-linear models, and to SVM-Struct for max-margin models. The algorithms are applied to a multi-class problem as well as to a more complex large-scale parsing task. In all these settings, the EG algorithms presented here outperform the other methods.
Resumo:
Background There has been increasing interest in assessing the impacts of temperature on mortality. However, few studies have used a case–crossover design to examine non-linear and distributed lag effects of temperature on mortality. Additionally, little evidence is available on the temperature-mortality relationship in China, or what temperature measure is the best predictor of mortality. Objectives To use a distributed lag non-linear model (DLNM) as a part of case–crossover design. To examine the non-linear and distributed lag effects of temperature on mortality in Tianjin, China. To explore which temperature measure is the best predictor of mortality; Methods: The DLNM was applied to a case¬−crossover design to assess the non-linear and delayed effects of temperatures (maximum, mean and minimum) on deaths (non-accidental, cardiopulmonary, cardiovascular and respiratory). Results A U-shaped relationship was consistently found between temperature and mortality. Cold effects (significantly increased mortality associated with low temperatures) were delayed by 3 days, and persisted for 10 days. Hot effects (significantly increased mortality associated with high temperatures) were acute and lasted for three days, and were followed by mortality displacement for non-accidental, cardiopulmonary, and cardiovascular deaths. Mean temperature was a better predictor of mortality (based on model fit) than maximum or minimum temperature. Conclusions In Tianjin, extreme cold and hot temperatures increased the risk of mortality. Results suggest that the effects of cold last longer than the effects of heat. It is possible to combine the case−crossover design with DLNMs. This allows the case−crossover design to flexibly estimate the non-linear and delayed effects of temperature (or air pollution) whilst controlling for season.
Resumo:
Concrete is commonly used as a primary construction material for tall building construction. Load bearing components such as columns and walls in concrete buildings are subjected to instantaneous and long term axial shortening caused by the time dependent effects of "shrinkage", "creep" and "elastic" deformations. Reinforcing steel content, variable concrete modulus, volume to surface area ratio of the elements and environmental conditions govern axial shortening. The impact of differential axial shortening among columns and core shear walls escalate with increasing building height. Differential axial shortening of gravity loaded elements in geometrically complex and irregular buildings result in permanent distortion and deflection of the structural frame which have a significant impact on building envelopes, building services, secondary systems and the life time serviceability and performance of a building. Existing numerical methods commonly used in design to quantify axial shortening are mainly based on elastic analytical techniques and therefore unable to capture the complexity of non-linear time dependent effect. Ambient measurements of axial shortening using vibrating wire, external mechanical strain, and electronic strain gauges are methods that are available to verify pre-estimated values from the design stage. Installing these gauges permanently embedded in or on the surface of concrete components for continuous measurements during and after construction with adequate protection is uneconomical, inconvenient and unreliable. Therefore such methods are rarely if ever used in actual practice of building construction. This research project has developed a rigorous numerical procedure that encompasses linear and non-linear time dependent phenomena for prediction of axial shortening of reinforced concrete structural components at design stage. This procedure takes into consideration (i) construction sequence, (ii) time varying values of Young's Modulus of reinforced concrete and (iii) creep and shrinkage models that account for variability resulting from environmental effects. The capabilities of the procedure are illustrated through examples. In order to update previous predictions of axial shortening during the construction and service stages of the building, this research has also developed a vibration based procedure using ambient measurements. This procedure takes into consideration the changes in vibration characteristic of structure during and after construction. The application of this procedure is illustrated through numerical examples which also highlight the features. The vibration based procedure can also be used as a tool to assess structural health/performance of key structural components in the building during construction and service life.
Resumo:
Purpose - The purpose of this paper is to examine the possibility of an inverted U-shaped relationship between job demands and work engagement, and whether social support moderates this relationship. Design/methodology/approach – This study uses 307 technical and information technology (IT) managers who responded to an online survey. Multiple regressions are employed to examine linear and curvilinear relationship among variables. Findings – Overall, results support the applicability of the quadratic effect of job demands on employee engagement. However, only supervisor support, not colleague support, moderated the relationship between job demands and work engagement. Originality/value – The paper is the first to shed light on the quadratic effect of job demands on work engagement. The findings have noteworthy implications for managers to design optimal job demands that increase employee engagement.