903 resultados para Learning set


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An alarmingly high number of adults in the world's most developed countries are linguistically functionally illiterate. The research presented in this paper describes ALEX©, an ongoing attempt to successfully develop an innovative assistive, mobile, experiential language-learning application to support the daily literacy education and needs of such adults, anywhere, anytime. We introduce a set of guidelines we have collated to inform the design of mobile assistive technologies, introduce our application and describe the design activities to date that have led to the development of our current application. We present this overview in the hope that it is useful to others working in the fledgling domains of mobile assistive technology design and/or mobile experiential language-learning technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We developed a parallel strategy for learning optimally specific realizable rules by perceptrons, in an online learning scenario. Our result is a generalization of the Caticha–Kinouchi (CK) algorithm developed for learning a perceptron with a synaptic vector drawn from a uniform distribution over the N-dimensional sphere, so called the typical case. Our method outperforms the CK algorithm in almost all possible situations, failing only in a denumerable set of cases. The algorithm is optimal in the sense that it saturates Bayesian bounds when it succeeds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There appears to be a missing dimension in OL literature to embrace the collective experience of emotion, both within groups and communities and also across the organization as a whole. The concept of OL efficacy- as a stimulus offering energy and direction for learning - remains unexplored. This research involved engaging with a company we have called ‘Electroco’ in depth to create a rich and nuanced representation of OL and members’ perceptions of OL over an extended time-frame (five years). We drew upon grounded theory research methodology (Locke, 2001), to elicit feedback from the organization, which was then used to inform future research plans and/ or refine emerging ideas. The concept of OL efficacy gradually emerged as a factor to be considered when exploring the relationship between individual learning and OL. . Bearing in mind Bandura’s (1982) conceptualization of self-efficacy (linked with mastery, modelling, verbal persuasion and emotional arousal), we developed a coding strategy encompassing these four factors as conceptualized at the organizational level. We added a fifth factor: ‘control of OL.’ We focused on feelings across the organization and the extent of consensus or otherwise around these five attributes. The construct has potential significance for how people are managed in many ways. Not only is OL efficacy is difficult for competitors to copy (arising as it does from the collective experience of working within a specific context); the self-efficacy concept suggests that success can be engineered with ‘small wins’ to reinforce mastery perceptions. Leaders can signal the importance of interaction with the external context, and encourage reflection on the strategies adopted by competitors or benchmark organizations (modelling). The theory also underlines the key role managers may play in persuading others about their organization’s propensity to learn (by focusing on success stories, for example). Research is set to continue within other sectors, including the high-performance financial service sector as well as the health-care technology sector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The World Wide Web provides plentiful contents for Web-based learning, but its hyperlink-based architecture connects Web resources for browsing freely rather than for effective learning. To support effective learning, an e-learning system should be able to discover and make use of the semantic communities and the emerging semantic relations in a dynamic complex network of learning resources. Previous graph-based community discovery approaches are limited in ability to discover semantic communities. This paper first suggests the Semantic Link Network (SLN), a loosely coupled semantic data model that can semantically link resources and derive out implicit semantic links according to a set of relational reasoning rules. By studying the intrinsic relationship between semantic communities and the semantic space of SLN, approaches to discovering reasoning-constraint, rule-constraint, and classification-constraint semantic communities are proposed. Further, the approaches, principles, and strategies for discovering emerging semantics in dynamic SLNs are studied. The basic laws of the semantic link network motion are revealed for the first time. An e-learning environment incorporating the proposed approaches, principles, and strategies to support effective discovery and learning is suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes two phases of a project set up to encourage students to be more reflective about their studies and their career goals. it takes as its starting point a discussion with employers about the Jack of reflection that they observed in otherwise highly skilled management graduates. The project.examin!ld.a number of processes, including mentoring, logbooks and learning style questionnaires to gauge which was the most effective in inspiring students to be reflective. Having identified the best methods the project entered a second phase which involved rolling out the findings to large numbers of students. The challenges of doing this are analysed in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ontology construction for any domain is a labour intensive and complex process. Any methodology that can reduce the cost and increase efficiency has the potential to make a major impact in the life sciences. This paper describes an experiment in ontology construction from text for the animal behaviour domain. Our objective was to see how much could be done in a simple and relatively rapid manner using a corpus of journal papers. We used a sequence of pre-existing text processing steps, and here describe the different choices made to clean the input, to derive a set of terms and to structure those terms in a number of hierarchies. We describe some of the challenges, especially that of focusing the ontology appropriately given a starting point of a heterogeneous corpus. Results - Using mainly automated techniques, we were able to construct an 18055 term ontology-like structure with 73% recall of animal behaviour terms, but a precision of only 26%. We were able to clean unwanted terms from the nascent ontology using lexico-syntactic patterns that tested the validity of term inclusion within the ontology. We used the same technique to test for subsumption relationships between the remaining terms to add structure to the initially broad and shallow structure we generated. All outputs are available at http://thirlmere.aston.ac.uk/~kiffer/animalbehaviour/ webcite. Conclusion - We present a systematic method for the initial steps of ontology or structured vocabulary construction for scientific domains that requires limited human effort and can make a contribution both to ontology learning and maintenance. The method is useful both for the exploration of a scientific domain and as a stepping stone towards formally rigourous ontologies. The filtering of recognised terms from a heterogeneous corpus to focus upon those that are the topic of the ontology is identified to be one of the main challenges for research in ontology learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ontology construction for any domain is a labour intensive and complex process. Any methodology that can reduce the cost and increase efficiency has the potential to make a major impact in the life sciences. This paper describes an experiment in ontology construction from text for the Animal Behaviour domain. Our objective was to see how much could be done in a simple and rapid manner using a corpus of journal papers. We used a sequence of text processing steps, and describe the different choices made to clean the input, to derive a set of terms and to structure those terms in a hierarchy. We were able in a very short space of time to construct a 17000 term ontology with a high percentage of suitable terms. We describe some of the challenges, especially that of focusing the ontology appropriately given a starting point of a heterogeneous corpus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural language understanding is to specify a computational model that maps sentences to their semantic mean representation. In this paper, we propose a novel framework to train the statistical models without using expensive fully annotated data. In particular, the input of our framework is a set of sentences labeled with abstract semantic annotations. These annotations encode the underlying embedded semantic structural relations without explicit word/semantic tag alignment. The proposed framework can automatically induce derivation rules that map sentences to their semantic meaning representations. The learning framework is applied on two statistical models, the conditional random fields (CRFs) and the hidden Markov support vector machines (HM-SVMs). Our experimental results on the DARPA communicator data show that both CRFs and HM-SVMs outperform the baseline approach, previously proposed hidden vector state (HVS) model which is also trained on abstract semantic annotations. In addition, the proposed framework shows superior performance than two other baseline approaches, a hybrid framework combining HVS and HM-SVMs and discriminative training of HVS, with a relative error reduction rate of about 25% and 15% being achieved in F-measure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years Web has become mainstream medium for communication and information dissemination. This paper presents approaches and methods for adaptive learning implementation, which are used in some contemporary web-interfaced Learning Management Systems (LMSs). The problem is not how to create electronic learning materials, but how to locate and utilize the available information in personalized way. Different attitudes to personalization are briefly described in section 1. The real personalization requires a user profile containing information about preferences, aims, and educational history to be stored and used by the system. These issues are considered in section 2. A method for development and design of adaptive learning content in terms of learning strategy system support is represented in section 3. Section 4 includes a set of innovative personalization services that are suggested by several very important research projects (SeLeNe project, ELENA project, etc.) dated from the last few years. This section also describes a model for role- and competency-based learning customization that uses Web Services approach. The last part presents how personalization techniques are implemented in Learning Grid-driven applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

E-learning is supposing an innovation in teaching, raising from the development of new technologies. It is based in a set of educational resources, including, among others, multimedia or interactive contents accessible through Internet or Intranet networks. A whole spectrum of tools and services support e-learning, some of them include auto-evaluation and automated correction of test-like exercises, however, this sort of exercises are very constrained because of its nature: fixed contents and correct answers suppose a limit in the way teachers may evaluation students. In this paper we propose a new engine that allows validating complex exercises in the area of Data Structures and Algorithms. Correct solutions to exercises do not rely only in how good the execution of the code is, or if the results are same as expected. A set of criteria on algorithm complexity or correctness in the use of the data structures are required. The engine presented in this work covers a wide set of exercises with these characteristics allowing teachers to establish the set of requirements for a solution, and students to obtain a measure on the quality of their solution in the same terms that are later required for exams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An eMathTeacher [Sánchez-Torrubia 2007a] is an eLearning on line self assessment tool that help students to active learning math algorithms by themselves, correcting their mistakes and providing them with clues to find the right solution. The tool presented in this paper is an example of this new concept on Computer Aided Instruction (CAI) resources and has been implemented as a Java applet and designed as an auxiliary instrument for both classroom teaching and individual practicing of Fleury’s algorithm. This tool, included within a set of eMathTeacher tools, has been designed as educational complement of Graph Algorithm active learning for first course students. Its characteristics of visualization, simplicity and interactivity, make this tutorial a great value pedagogical instrument.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of recognition on finite set of events is considered. The generalization ability of classifiers for this problem is studied within the Bayesian approach. The method for non-uniform prior distribution specification on recognition tasks is suggested. It takes into account the assumed degree of intersection between classes. The results of the analysis are applied for pruning of classification trees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose the adaptive algorithm for solving a set of similar scheduling problems using learning technology. It is devised to combine the merits of an exact algorithm based on the mixed graph model and heuristics oriented on the real-world scheduling problems. The former may ensure high quality of the solution by means of an implicit exhausting enumeration of the feasible schedules. The latter may be developed for certain type of problems using their peculiarities. The main idea of the learning technology is to produce effective (in performance measure) and efficient (in computational time) heuristics by adapting local decisions for the scheduling problems under consideration. Adaptation is realized at the stage of learning while solving a set of sample scheduling problems using a branch-and-bound algorithm and structuring knowledge using pattern recognition apparatus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a Refactoring Learning Environment, which is intended to analyze and assess programming code, based on refactoring rules. The Refactoring Learning Environment architecture includes an intelligent assistant – Refactoring Agent, which is responsible for analysis and assessment of the code, written by students in real time by using a set of refactoring methods. According to the situation and based on the refactoring method, which should be applied, the agent could react in different ways. Its goal is to show the student, as much as possible, the weak places of his programming code and the possible ways to makes it better.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Big data comes in various ways, types, shapes, forms and sizes. Indeed, almost all areas of science, technology, medicine, public health, economics, business, linguistics and social science are bombarded by ever increasing flows of data begging to be analyzed efficiently and effectively. In this paper, we propose a rough idea of a possible taxonomy of big data, along with some of the most commonly used tools for handling each particular category of bigness. The dimensionality p of the input space and the sample size n are usually the main ingredients in the characterization of data bigness. The specific statistical machine learning technique used to handle a particular big data set will depend on which category it falls in within the bigness taxonomy. Large p small n data sets for instance require a different set of tools from the large n small p variety. Among other tools, we discuss Preprocessing, Standardization, Imputation, Projection, Regularization, Penalization, Compression, Reduction, Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Replication, Sequentialization. Indeed, it is important to emphasize right away that the so-called no free lunch theorem applies here, in the sense that there is no universally superior method that outperforms all other methods on all categories of bigness. It is also important to stress the fact that simplicity in the sense of Ockham’s razor non-plurality principle of parsimony tends to reign supreme when it comes to massive data. We conclude with a comparison of the predictive performance of some of the most commonly used methods on a few data sets.