973 resultados para Large Linear System
Resumo:
New ways of combining observations with numerical models are discussed in which the size of the state space can be very large, and the model can be highly nonlinear. Also the observations of the system can be related to the model variables in highly nonlinear ways, making this data-assimilation (or inverse) problem highly nonlinear. First we discuss the connection between data assimilation and inverse problems, including regularization. We explore the choice of proposal density in a Particle Filter and show how the ’curse of dimensionality’ might be beaten. In the standard Particle Filter ensembles of model runs are propagated forward in time until observations are encountered, rendering it a pure Monte-Carlo method. In large-dimensional systems this is very inefficient and very large numbers of model runs are needed to solve the data-assimilation problem realistically. In our approach we steer all model runs towards the observations resulting in a much more efficient method. By further ’ensuring almost equal weight’ we avoid performing model runs that are useless in the end. Results are shown for the 40 and 1000 dimensional Lorenz 1995 model.
Resumo:
Current methods for estimating vegetation parameters are generally sub-optimal in the way they exploit information and do not generally consider uncertainties. We look forward to a future where operational dataassimilation schemes improve estimates by tracking land surface processes and exploiting multiple types of observations. Dataassimilation schemes seek to combine observations and models in a statistically optimal way taking into account uncertainty in both, but have not yet been much exploited in this area. The EO-LDAS scheme and prototype, developed under ESA funding, is designed to exploit the anticipated wealth of data that will be available under GMES missions, such as the Sentinel family of satellites, to provide improved mapping of land surface biophysical parameters. This paper describes the EO-LDAS implementation, and explores some of its core functionality. EO-LDAS is a weak constraint variational dataassimilationsystem. The prototype provides a mechanism for constraint based on a prior estimate of the state vector, a linear dynamic model, and EarthObservationdata (top-of-canopy reflectance here). The observation operator is a non-linear optical radiative transfer model for a vegetation canopy with a soil lower boundary, operating over the range 400 to 2500 nm. Adjoint codes for all model and operator components are provided in the prototype by automatic differentiation of the computer codes. In this paper, EO-LDAS is applied to the problem of daily estimation of six of the parameters controlling the radiative transfer operator over the course of a year (> 2000 state vector elements). Zero and first order process model constraints are implemented and explored as the dynamic model. The assimilation estimates all state vector elements simultaneously. This is performed in the context of a typical Sentinel-2 MSI operating scenario, using synthetic MSI observations simulated with the observation operator, with uncertainties typical of those achieved by optical sensors supposed for the data. The experiments consider a baseline state vector estimation case where dynamic constraints are applied, and assess the impact of dynamic constraints on the a posteriori uncertainties. The results demonstrate that reductions in uncertainty by a factor of up to two might be obtained by applying the sorts of dynamic constraints used here. The hyperparameter (dynamic model uncertainty) required to control the assimilation are estimated by a cross-validation exercise. The result of the assimilation is seen to be robust to missing observations with quite large data gaps.
Resumo:
(ABR) is of fundamental importance to the investiga- tion of the auditory system behavior, though its in- terpretation has a subjective nature because of the manual process employed in its study and the clinical experience required for its analysis. When analyzing the ABR, clinicians are often interested in the identi- fication of ABR signal components referred to as Jewett waves. In particular, the detection and study of the time when these waves occur (i.e., the wave la- tency) is a practical tool for the diagnosis of disorders affecting the auditory system. In this context, the aim of this research is to compare ABR manual/visual analysis provided by different examiners. Methods: The ABR data were collected from 10 normal-hearing subjects (5 men and 5 women, from 20 to 52 years). A total of 160 data samples were analyzed and a pair- wise comparison between four distinct examiners was executed. We carried out a statistical study aiming to identify significant differences between assessments provided by the examiners. For this, we used Linear Regression in conjunction with Bootstrap, as a me- thod for evaluating the relation between the responses given by the examiners. Results: The analysis sug- gests agreement among examiners however reveals differences between assessments of the variability of the waves. We quantified the magnitude of the ob- tained wave latency differences and 18% of the inves- tigated waves presented substantial differences (large and moderate) and of these 3.79% were considered not acceptable for the clinical practice. Conclusions: Our results characterize the variability of the manual analysis of ABR data and the necessity of establishing unified standards and protocols for the analysis of these data. These results may also contribute to the validation and development of automatic systems that are employed in the early diagnosis of hearing loss.
Resumo:
Climate-model simulations of the large-scale temperature responses to increased radiative forcing include enhanced land-sea contrast, stronger response at higher latitudes than in the tropics, and differential responsesin warm and cool season climates to uniform forcing. Here we show that these patterns are also characteristic of model simulations of past climates. The differences in the responses over land as opposed to over the ocean, between high and low latitudes, and between summer and winter are remarkably consistent (proportional and nearly linear) across simulations of both cold and warm climates. Similar patterns also appear in historical observations and paleoclimatic reconstructions, implying that such responses are characteristic features of the climate system, and not simple model artifacts, thereby increasing our confidence in the ability of climate models to correctly simulate different climatic states.
Resumo:
Advances in our understanding of the large-scale electric and magnetic fields in the coupled magnetosphere-ionosphere system are reviewed. The literature appearing in the period January 1991–June 1993 is sorted into 8 general areas of study. The phenomenon of substorms receives the most attention in this literature, with the location of onset being the single most discussed issue. However, if the magnetic topology in substorm phases was widely debated, less attention was paid to the relationship of convection to the substorm cycle. A significantly new consensus view of substorm expansion and recovery phases emerged, which was termed the ‘Kiruna Conjecture’ after the conference at which it gained widespread acceptance. The second largest area of interest was dayside transient events, both near the magnetopause and the ionosphere. It became apparent that these phenomena include at least two classes of events, probably due to transient reconnection bursts and sudden solar wind dynamic pressure changes. The contribution of both types of event to convection is controversial. The realisation that induction effects decouple electric fields in the magnetosphere and ionosphere, on time scales shorter than several substorm cycles, calls for broadening of the range of measurement techniques in both the ionosphere and at the magnetopause. Several new techniques were introduced including ionospheric observations which yield reconnection rate as a function of time. The magnetospheric and ionospheric behaviour due to various quasi-steady interplanetary conditions was studied using magnetic cloud events. For northward IMF conditions, reverse convection in the polar cap was found to be predominantly a summer hemisphere phenomenon and even for extremely rare prolonged southward IMF conditions, the magnetosphere was observed to oscillate through various substorm cycles rather than forming a steady-state convection bay.
Resumo:
Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961–2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño–Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.
Resumo:
We assess Indian summer monsoon seasonal forecasts in GloSea5-GC2, the Met Office fully coupled subseasonal to seasonal ensemble forecasting system. Using several metrics, GloSea5-GC2 shows similar skill to other state-of-the-art forecast systems. The prediction skill of the large-scale South Asian monsoon circulation is higher than that of Indian monsoon rainfall. Using multiple linear regression analysis we evaluate relationships between Indian monsoon rainfall and five possible drivers of monsoon interannual variability. Over the time period studied (1992-2011), the El Nino-Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) are the most important of these drivers in both observations and GloSea5-GC2. Our analysis indicates that ENSO and its teleconnection with the Indian rainfall are well represented in GloSea5-GC2. However, the relationship between the IOD and Indian rainfall anomalies is too weak in GloSea5-GC2, which may be limiting the prediction skill of the local monsoon circulation and Indian rainfall. We show that this weak relationship likely results from a coupled mean state bias that limits the impact of anomalous wind forcing on SST variability, resulting in erroneous IOD SST anomalies. Known difficulties in representing convective precipitation over India may also play a role. Since Indian rainfall responds weakly to the IOD, it responds more consistently to ENSO than in observations. Our assessment identifies specific coupled biases that are likely limiting GloSea5-GC2 prediction skill, providing targets for model improvement.
Resumo:
A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.
Resumo:
We report the partitioning of the interaction-induced static electronic dipole (hyper)polarizabilities for linear hydrogen cyanide complexes into contributions arising from various interaction energy terms. We analyzed the nonadditivities of the studied properties and used these data to predict the electric properties of an infinite chain. The interaction-induced static electric dipole properties and their nonadditivities were analyzed using an approach based on numerical differentiation of the interaction energy components estimated in an external electric field. These were obtained using the hybrid variational-perturbational interaction energy decomposition scheme, augmented with coupled-cluster calculations, with singles, doubles, and noniterative triples. Our results indicate that the interaction-induced dipole moments and polarizabilities are primarily electrostatic in nature; however, the composition of the interaction hyperpolarizabilities is much more complex. The overlap effects substantially quench the contributions due to electrostatic interactions, and therefore, the major components are due to the induction and exchange induction terms, as well as the intramolecular electron-correlation corrections. A particularly intriguing observation is that the interaction first hyperpolarizability in the studied systems not only is much larger than the corresponding sum of monomer properties, but also has the opposite sign. We show that this effect can be viewed as a direct consequence of hydrogen-bonding interactions that lead to a decrease of the hyperpolarizability of the proton acceptor and an increase of the hyperpolarizability of the proton donor. In the case of the first hyperpolarizability, we also observed the largest nonadditivity of interaction properties (nearly 17%) which further enhances the effects of pairwise interactions.
Resumo:
One of the main aims of this thesis is to design an optimized commercial Photovoltaic (PV) system in Barbados from several variables such as racking type, module type and inverter type based on practicality, technical performance as well as financial returns to the client. Detailed simulations are done in PVSYST and financial models are used to compare different systems and their viability. Once the preeminent system is determined from a financial and performance perspective a detailed design is done using PVSYST and AutoCAD to design the most optimal PV system for the customer. In doing so, suitable engineering drawings are generated which are detailed enough for construction of the system. Detailed cost with quotes from relevant manufacturers, suppliers and estimators become instrumental in determining Balance of System Costs in addition to total project cost. The final simulated system is suggested with a PV capacity of 425kW and an inverter output of 300kW resulting in an array oversizing of 1.42. The PV system has a weighted Performance Ratio of 77 %, a specific yield of 1467 kWh/kWp and a projected annual production of 624 MWh/yr. This system is estimated to offset approximately 28 % of Carlton’s electrical load annually. Over the course of 20 years the PV system is projected to produce electricity at a cost of $0.201USD/kWh which is significantly lower than the $0.35 USD/kWh paid to the utility at the time of writing this thesis. Due to the high cost of electricity on the island, an attractive Feed-In-Tariff is not necessary to warrant the installation of a commercial System which over a lifetime which produces electricity at less than 60% of the cost to the user purchasing electricity from the utility. A simple payback period of 5.4 years, a return on investment of 17 % without incentives, in addition to an estimated diversion of 6840 barrels of oil or 2168 tonnes of CO2 further provides compelling justification for the installation of a commercial Photovoltaic System not only on Carlton A-1 Supermarket, but also island wide as well as regionally where most electricity supplies are from imported fossil fuels.
Resumo:
In the present work, we report the use of bacterial colonies to optimize macroarray technique. The devised system is significantly cheaper than other methods available to detect large-scale differential gene expression. Recombinant Escherichia coli clones containing plasmid-encoded copies of 4,608 individual expressed sequence tag (ESTs) were robotically spotted onto nylon membranes that were incubated for 6 and 12 h to allow the bacteria to grow and, consequently, amplify the cloned ESTs. The membranes were then hybridized with a beta-lactamase gene specific probe from the recombinant plasmid and, subsequently, phosphorimaged to quantify the microbial cells. Variance analysis demonstrated that the spot hybridization signal intensity was similar for 3,954 ESTs (85.8%) after 6 h of bacterial growth. Membranes spotted with bacteria colonies grown for 12 h had 4,017 ESTs (87.2%) with comparable signal intensity but the signal to noise ratio was fivefold higher. Taken together, the results of this study indicate that it is possible to investigate large-scale gene expression using macroarrays based on bacterial colonies grown for 6 h onto membranes.
Resumo:
The study of algorithms for active vibration control in smart structures is an area of interest, mainly due to the demand for better performance of mechanical systems, such as aircraft and aerospace structures. Smart structures, formed using actuators and sensors, can improve the dynamic performance with the application of several kinds of controllers. This article describes the application of a technique based on linear matrix inequalities (LMI) to design an active control system. The positioning of the actuators, the design of a robust state feedback controller and the design of an observer are all achieved using LMI. The following are considered in the controller design: limited actuator input, bounded output (energy) and robustness to parametric uncertainties. Active vibration control of a flat plate is chosen as an application example. The model is identified using experimental data by an eigensystem realization algorithm (ERA) and the placement of the two piezoelectric actuators and single sensor is determined using a finite element model (FEM) and an optimization procedure. A robust controller for active damping is designed using an LMI framework, and a reduced model with observation and control spillover effects is implemented using a computer. The simulation results demonstrate the efficacy of the approach, and show that the control system increases the damping in some of the modes.
Resumo:
In this work, we use a nonlinear control based on Optimal Linear Control. We used as mathematical model a Duffing equation to model a supporting structure for an unbalanced rotating machine with limited power (non-ideal motor). Numerical simulations are performed for a set control parameter (depending on the voltage of the motor, that is, in the static and dynamic characteristic of the motor) The interaction of the non-ideal excitation with the structure may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the system. Chaotic behavior is obtained for values of the parameters. Then, the proposed control strategy is applied in order to regulate the chaotic behavior, in order to obtain a periodic orbit and to decrease its amplitude. Both methodologies were used in complete agreement between them. The purpose of the paper is to give suggestions and recommendations to designers and engineers on how to drive this kind of system through resonance.
Resumo:
In this paper, a load transportation system in platforms or suspended by cables is considered. It is a monorail device and is modelled as an inverted pendulum built on a car driven by a DC motor. The governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the DC motor and the dynamical system, that is, we have a so-called non-ideal periodic problem. The problem is analysed and we also developed an optimal linear control design to stabilize the problem.