985 resultados para Landau-Lifshitz differential equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was the development and improvement of the mathematical models based on mass and heat balances, representing the drying transient process fruit pulp in spouted bed dryer with intermittent feeding. Mass and energy balance for drying, represented by a system of differential equations, were developed in Fortran language and adapted to the condition of intermittent feeding and mass accumulation. Were used the DASSL routine (Differential Algebraic System Solver) for solving the differential equation system and used a heuristic optimization algorithm in parameter estimation, the Particle Swarm algorithm. From the experimental data food drying, the differential models were used to determine the quantity of water and the drying air temperature at the exit of a spouted bed and accumulated mass of powder in the dryer. The models were validated using the experimental data of drying whose operating conditions, air temperature, flow rate and time intermittency, varied within the limits studied. In reviewing the results predicted, it was found that these models represent the experimental data of the kinetics of production and accumulation of powder and humidity and air temperature at the outlet of the dryer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the cosmology of the vacuum energy decaying into cold dark matter according to thermodynamics description of Alcaniz & Lima. We apply this model to analyze the evolution of primordial density perturbations in the matter that gave rise to the first generation of structures bounded by gravity in the Universe, called Population III Objects. The analysis of the dynamics of those systems will involve the calculation of a differential equation system governing the evolution of perturbations to the case of two coupled fluids (dark matter and baryonic matter), modeled with a Top-Hat profile based in the perturbation of the hydrodynamics equations, an efficient analytical tool to study the properties of dark energy models such as the behavior of the linear growth factor and the linear growth index, physical quantities closely related to the fields of peculiar velocities at any time, for different models of dark energy. The properties and the dynamics of current Universe are analyzed through the exact analytical form of the linear growth factor of density fluctuations, taking into account the influence of several physical cooling mechanisms acting on the density fluctuations of the baryonic component of matter during the evolution of the clouds of matter, studied from the primordial hydrogen recombination. This study is naturally extended to more general models of dark energy with constant equation of state parameter in a flat Universe

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we have elaborated a spline-based method of solution of inicial value problems involving ordinary differential equations, with emphasis on linear equations. The method can be seen as an alternative for the traditional solvers such as Runge-Kutta, and avoids root calculations in the linear time invariant case. The method is then applied on a central problem of control theory, namely, the step response problem for linear EDOs with possibly varying coefficients, where root calculations do not apply. We have implemented an efficient algorithm which uses exclusively matrix-vector operations. The working interval (till the settling time) was determined through a calculation of the least stable mode using a modified power method. Several variants of the method have been compared by simulation. For general linear problems with fine grid, the proposed method compares favorably with the Euler method. In the time invariant case, where the alternative is root calculation, we have indications that the proposed method is competitive for equations of sifficiently high order.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The number of zeros in (- 1, 1) of the Jacobi function of second kind Q(n)((alpha, beta)) (x), alpha, beta > - 1, i.e. The second solution of the differential equation(1 - x(2))y (x) + (beta - alpha - (alpha + beta + 2)x)y' (x) + n(n + alpha + beta + 1)y(x) = 0,is determined for every n is an element of N and for all values of the parameters alpha > - 1 and beta > - 1. It turns out that this number depends essentially on alpha and beta as well as on the specific normalization of the function Q(n)((alpha, beta)) (x). Interlacing properties of the zeros are also obtained. As a consequence of the main result, we determine the number of zeros of Laguerre's and Hermite's functions of second kind. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using conformal coordinates associated with conformal relativity-associated with de Sitter spacetime homeomorphic projection into Minkowski spacetime-we obtain a conformal Klein-Gordon partial differential equation, which is intimately related to the production of quasi-normal modes (QNMs) oscillations, in the context of electromagnetic and/or gravitational perturbations around, e.g., black holes. While QNMs arise as the solution of a wave-like equation with a Poschl-Teller potential, here we deduce and analytically solve a conformal 'radial' d'Alembert-like equation, from which we derive QNMs formal solutions, in a proposed alternative to more completely describe QNMs. As a by-product we show that this 'radial' equation can be identified with a Schrodinger-like equation in which the potential is exactly the second Poschl-Teller potential, and it can shed some new light on the investigations concerning QNMs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The teleparallel versions of the Einstein and the Landau-Lifshitz energy-momentum complexes of the gravitational field are obtained. By using these complexes, the total energy of the universe, which includes the energy of both the matter and the gravitational fields, is then obtained. It is shown that in the case of a closed universe, the total energy vanishes independently of the pseudotensor used, as well as of the three dimensionless coupling constants of teleparallel gravity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we discuss some exactly solvable Klein-Gordon equations. We basically discuss the existence of classes of potentials with different nonrelativistic limits, but which shares the intermediate effective Schroedinger differential equation. We comment about the possible use of relativistic exact solutions as approximations for nonrelativistic inexact potentials. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a solitary solution of the three-wave nonlinear partial differential equation (PDE) model - governing resonant space-time stimulated Brillouin or Raman backscattering - in the presence of a cw pump and dissipative material and Stokes waves. The study is motivated by pulse formation in optical fiber experiments. As a result of the instability any initial bounded Stokes signal is amplified and evolves to a subluminous backscattered Stokes pulse whose shape and velocity are uniquely determined by the damping coefficients and the cw-pump level. This asymptotically stable solitary three-wave structure is an attractor for any initial conditions in a compact support, in contrast to the known superluminous dissipative soliton solution which calls for an unbounded support. The linear asymptotic theory based on the Kolmogorov-Petrovskii-Piskunov assertion allows us to determine analytically the wave-front slope and the subluminous velocity, which are in remarkable agreement with the numerical computation of the nonlinear PDE model when the dynamics attains the asymptotic steady regime. © 1997 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports a conception phase of a piston engine global model. The model objective is forecast the motor performance (power, torque and specific consumption as a function of rotation and environmental conditions). Global model or Zero-dimensional is based on flux balance through each engine component. The resulting differential equations represents a compressive unsteady flow, in which, all dimensional variables are areas or volumes. A review is presented first. The ordinary differential equation system is presented and a Runge-Kutta method is proposed to solve it numerically. The model includes the momentum conservation equation to link the gas dynamics with the engine moving parts rigid body mechanics. As an oriented to objects model the documentation follows the UML standard. A discussion about the class diagrams is presented, relating the classes with physical model related. The OOP approach allows evolution from simple models to most complex ones without total code rewrite. Copyright © 2001 Society of Automotive Engineers, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of a dispersion-managed soliton in two-dimensional nonlinear Schrodinger equation with periodically varying dispersion has been explored. The averaged equations for the soliton width and chirp are obtained which successfully describe the long time evolution of the soliton. The slow dynamics of the soliton around the fixed points for the width and chirp are investigated and the corresponding frequencies are calculated. Analytical predictions are confirmed by direct partial differential equation (PDE) and ordinary differential equation (ODE) simulations. Application to a Bose-Einstein condensate in optical lattice is discussed. The existence of a dispersion-managed matter-wave soliton in such system is shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ablation is a thermal protection process with several applications in engineering, mainly in the field of airspace industry. The use of conventional materials must be quite restricted, because they would suffer catastrophic flaws due to thermal degradation of their structures. However, the same materials can be quite suitable once being protected by well-known ablative materials. The process that involves the ablative phenomena is complex, could involve the whole or partial loss of material that is sacrificed for absorption of energy. The analysis of the ablative process in a blunt body with revolution geometry will be made on the stagnation point area that can be simplified as a one-dimensional plane plate problem, hi this work the Generalized Integral Transform Technique (GITT) is employed for the solution of the non-linear system of coupled partial differential equations that model the phenomena. The solution of the problem is obtained by transforming the non-linear partial differential equation system to a system of coupled first order ordinary differential equations and then solving it by using well-established numerical routines. The results of interest such as the temperature field, the depth and the rate of removal of the ablative material are presented and compared with those ones available in the open literature.