975 resultados para Karamyschew, Alexander von, 1744-1791.
Resumo:
The Eag1 and Eag2, voltage-dependent potassium channels, and the small-conductance calcium-activated potassium channel (Kcnn3) are highly expressed in limbic regions of the brain, where their function is still unknown. Eag1 co-localizes with tyrosine hydroxilase enzyme in the substantia nigra and ventral tegmental area. Kcnn3 deficiency leads to enhanced serotonergic and dopaminergic neurotransmission accompanied by distinct alterations in emotional behaviors. As exposure to stress is able to change the expression and function of several ion channels, suggesting that they might be involved in the consequences of stress, we aimed at investigating Eag 1, Eag2 and Kcnn3 mRNA expression in the brains of rats submitted to isolation rearing. As the long-lasting alterations in emotional and behavioral regulation after stress have been related to changes in serotonergic neurotransmission, expressions of serotonin Htr1a and Htr2a receptors in male Wistar rats` brain were also investigated. Rats were reared in isolation or in groups of five for nine weeks after weaning. Isolated and socially reared rats were tested for exploratory activity in the open field test for 5 min and brains were processed for reverse-transcription coupled to quantitative polymerase chain reaction (qRT-PCR). Isolated reared rats showed decreased exploratory activity in the open field. Compared to socially reared rats, isolated rats showed reduced Htr2a mRNA expression in the striatum and brainstem and reduced Eag2 mRNA expression in all examined regions except cerebellum. To our knowledge, this is the first work to show that isolation rearing can change Eag2 gene expression in the brain. The involvement of this channel in stress-related behaviors is discussed.
Resumo:
The Hyades stream has long been thought to be a dispersed vestige of the Hyades cluster. However, recent analyses of the parallax distribution, of the mass function, and of the action-space distribution of stream stars have shown it to be rather composed of orbits trapped at a resonance of a density disturbance. This resonant scenario should leave a clearly different signature in the element abundances of stream stars than the dispersed cluster scenario, since the Hyades cluster is chemically homogeneous. Here, we study the metallicity as well as the element abundances of Li, Na, Mg, Fe, Zr, Ba, La, Ce, Nd and Eu for a random sample of stars belonging to the Hyades stream, and compare them with those of stars from the Hyades cluster. From this analysis: (i) we independently confirm that the Hyades stream cannot be solely composed of stars originating in the Hyades cluster; (ii) we show that some stars (namely 2/21) from the Hyades stream nevertheless have abundances compatible with an origin in the cluster; (iii) we emphasize that the use of Li as a chemical tag of the cluster origin of main-sequence stars is very efficient in the range 5500 K <= T(eff) <= 6200 K, since the Li sequence in the Hyades cluster is very tight, while at the same time spanning a large abundance range; (iv) we show that, while this evaporated population has a metallicity excess of similar to 0.2 dex with respect to the local thin-disc population, identical to that of the Hyades cluster, the remainder of the Hyades stream population has still a metallicity excess of similar to 0.06-0.15 dex, consistent with an origin in the inner Galaxy and (v) we show that the Hyades stream can be interpreted as an inner 4:1 resonance of the spiral pattern: this then also reproduces an orbital family compatible with the Sirius stream, and places the origin of the Hyades stream up to 1 kpc inwards from the solar radius, which might explain the observed metallicity excess of the stream population.
Resumo:
We describe and illustrate two new species, Actinocephalus delicatus and A. giuliettiae (Eriocaulaceae, Paepalanthoideae), from the Espinhaco Range in Minas Gerais, Brazil, and compare them with the morphologically most similar species. Diagnostic characters, morphological variation, geographic distribution, habitat and conservation status, as well as line drawings, photos and a distribution map are provided for both species.
Resumo:
In networks of plant-animal mutualisms, different animal groups interact preferentially with different plants, thus forming distinct modules responsible for different parts of the service. However, what we currently know about seed dispersal networks is based only on birds. Therefore, we wished to fill this gap by studying bat-fruit networks and testing how they differ from bird-fruit networks. As dietary overlap of Neotropical bats and birds is low, they should form distinct mutualistic modules within local networks. Furthermore, since frugivory evolved only once among Neotropical bats, but several times independently among Neotropical birds, greater dietary overlap is expected among bats, and thus connectance and nestedness should be higher in bat-fruit networks. If bat-fruit networks have higher nestedness and connectance, they should be more robust to extinctions. We analyzed 1 mixed network of both bats and birds and 20 networks that consisted exclusively of either bats (11) or birds (9). As expected, the structure of the mixed network was both modular (M = 0.45) and nested (NODF = 0.31); one module contained only birds and two only bats. In 20 datasets with only one disperser group, bat-fruit networks (NODF = 0.53 +/- A 0.09, C = 0.30 +/- A 0.11) were more nested and had a higher connectance than bird-fruit networks (NODF = 0.42 +/- A 0.07, C = 0.22 +/- A 0.09). Unexpectedly, robustness to extinction of animal species was higher in bird-fruit networks (R = 0.60 +/- A 0.13) than in bat-fruit networks (R = 0.54 +/- A 0.09), and differences were explained mainly by species richness. These findings suggest that a modular structure also occurs in seed dispersal networks, similar to pollination networks. The higher nestedness and connectance observed in bat-fruit networks compared with bird-fruit networks may be explained by the monophyletic evolution of frugivory in Neotropical bats, among which the diets of specialists seem to have evolved from the pool of fruits consumed by generalists.
Resumo:
Phacellophora camtschatica has long been assigned to the semaeostome scyphozoan family Ulmaridae. Early stages (scyphistomae, strobilae, ephyrae, postephyrae, and young medusae) of the species were compared with those of several other semaeostomes currently assigned to Ulmaridae, Pelagiidae, and Cyaneidae. Juveniles of P. camtschatica did not strictly conform with characters of those of any of these families, and appeared intermediate between Cyaneidae and Ulmaridae. A new family, Phacellophoridae, is proposed to accommodate P. camtschatica.
Resumo:
Based on 16 specimens from the Southwestern Atlantic coast (Argentina and Brazil) we reinterpret the taxonomic position of Tessera gemmaria Goy, 1979, a stauromedusa considered as incertae sedis for a long time. Using external morphology, histological preparations and molecular data (16S and COI) we conclude that T. gemmaria is an early stage of a cerinula, the long-lived planktonic larval stage of the Ceriantharia (Anthozoa).
Resumo:
Subtle quantum properties offer exciting new prospects in optical communications. For example, quantum entanglement enables the secure exchange of cryptographic keys(1) and the distribution of quantum information by teleportation(2,3). Entangled bright beams of light are increasingly appealing for such tasks, because they enable the use of well-established classical communications techniques(4). However, quantum resources are fragile and are subject to decoherence by interaction with the environment. The unavoidable losses in the communication channel can lead to a complete destruction of entanglement(5-8), limiting the application of these states to quantum-communication protocols. We investigate the conditions under which this phenomenon takes place for the simplest case of two light beams, and analyse characteristics of states which are robust against losses. Our study sheds new light on the intriguing properties of quantum entanglement and how they may be harnessed for future applications.
Resumo:
We present the first measurement of photoproduction of J/psi and of two-photon production of high-mass e(+)e(-) pairs in electromagnetic (or ultra-peripheral) nucleus-nucleus interactions, using Au + Au data at root s(NN) = 200 GeV. The events are tagged with forward neutrons emitted following Coulomb excitation of one or both Au* nuclei. The event sample consists of 28 events with m(e+e-) > 2 GeV/c(2) with zero like-sign background. The measured cross sections at midrapidity of d sigma/dy (J/psi + Xn, y = 0) = 76 +/- 33 (stat) +/- 11 (syst) pb and d(2)sigma /dm dy (e(+) e(-) + Xn, y = 0) = 86 +/- 23(stat) +/- 16(syst) mu b/ (GeV/c(2)) for m(e+e-) epsilon vertical bar 2.0, 2.8 vertical bar GeV/c(2) have been compared and found to be consistent with models for photoproduction of J/psi and QED based calculations of two-photon production of e(+)e(-) pairs. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In a 2D parameter space, by using nine experimental time series of a Clitia`s circuit, we characterized three codimension-1 chaotic fibers parallel to a period-3 window. To show the local preservation of the properties of the chaotic attractors in each fiber, we applied the closed return technique and two distinct topological methods. With the first topological method we calculated the linking, numbers in the sets of unstable periodic orbits, and with the second one we obtained the symbolic planes and the topological entropies by applying symbolic dynamic analysis. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
PHENIX has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c(2) in p + p collisions at root s = 200 GeV. The contributions from light meson decays to e(+)e(-) pairs have been determined based on measurements of hadron production cross sections by PHENIX. Within the systematic uncertainty of similar to 20% they account for all e(+)e(-) pairs in the mass region below similar to 1 GeV/c(2). The e(+)e(-) pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) pb. which is consistent with QCD calculations and measurements of single leptons by PHENIX. (C) 2008 Elsevier BV. All rights reserved.
Resumo:
Entanglement is an essential quantum resource for the acceleration of information processing as well as for sophisticated quantum communication protocols. Quantum information networks are expected to convey information from one place to another by using entangled light beams. We demonstrated the generation of entanglement among three bright beams of light, all of different wavelengths (532.251, 1062.102, and 1066.915 nanometers). We also observed disentanglement for finite channel losses, the continuous variable counterpart to entanglement sudden death.
Resumo:
Cells are able to detect and respond to mechanical cues from their environment. Previous studies have investigated this mechanosensitivity on various cell types, including neural cells such as astrocytes. In this study, we have carefully optimized polyacrylamide gels, commonly used as compliant growth substrates, considering their homogeneity in surface topography, mechanical properties, and coating density, and identified several potential pitfalls for the purpose of mechanosensitivity studies. The resulting astrocyte response to growth on substrates with shear storage moduli of G` = 100 Pa and G` = 10 kPa was then evaluated as a function of coating density of poly-D-lysine using quantitative morphometric analysis. Astrocytes cultured on stiff substrates showed significantly increased perimeter, area, diameter, elongation, number of extremities and overall complexity if compared to those cultured on compliant substrates. A statistically significant difference in the overall morphological score was confirmed with an artificial intelligence-based shape analysis. The dependence of the cells` morphology on PDL coating density seemed to be weak compared to the effect of the substrate stiffness and was slightly biphasic, with a maximum at 10-100 mu g ml(-1) PDL concentration. Our finding suggests that the compliance of the surrounding tissue in vivo may influence astrocyte morphology and behavior.
Resumo:
The structure of laser glasses in the system (B(2)O(3))(0.6){(Al(2)O(3))(0.4-x)(Y(2)O(3))(x)} (0.1 <= x <= 0.25) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as Y-3d core-level X-ray photoelectron spectroscopy, (11)B magic-angle spinning (MAS) NMR spectra reveal that the majority of the boron atoms are three-coordinated, and a slight increase of four-coordinated boron content with increasing x can be noticed. (27)Al MAS NMR spectra show that the alumina species are present in the coordination states four, five and six. All of them are in intimate contact with both the three- and the four-coordinate boron species and vice versa, as indicated by (11)B/(27)Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, nonsegregated glass structure. For the first time, (89)Y solid state NMR has been used to probe the local environment of Y(3+) ions in a glass-forming system. The intrinsic sensitivity problem associated with (89)Y NMR has been overcome by combining the benefits of paramagnetic doping with those of signal accumulation via Carr-Purcell spin echo trains. Both the (89)Y chemical shifts and the Y-3d core level binding energies are found to be rather sensitive to the yttrium bonding state and reveal that the bonding properties of the yttrium atoms in these glasses are similar to those found in the model compounds YBO(3) and YAl(3)(BO(3))(4), Based on charge balance considerations as well as (11)B NMR line shape analyses, the dominant borate species are concluded to be meta- and pyroborate anions.
Resumo:
A new preparation route towards rare-earth (RE) doped polycrystalline lead lanthanum zirconate titanate (PLZT) ceramics (RE = Y(3+), Nd(3+), Yb(3+)), based on the use of doped lanthanum oxide or zirconia, is reported. Structural characterization by X-ray powder diffraction reveals that secondary phase formation can be substantially diminished in comparison to conventional preparation methods. The distribution of the rare-earth dopants was investigated as a function of concentration by static (207)Pb spin echo NMR spectra, using Fourier Transformation of Carr-Purcell-Meiboom-Gill spin echo trains. For the Nd- and Yb-doped materials, the interaction of the (207)Pb nuclei with the unpaired electron spin density results in significant broadening and shifting of the NMR signal, whereas these effects are absent in the diamagnetic Y(3+) doped materials. Based on different concentration dependences of the NMR lineshape parameters, we conclude that the structural role of the Nd(3+) dopants differs significantly from that of Yb(3+). While the Nd(3+) ions appear to be statistically distributed in the PLZT lattice, incorporation of Yb(3+) into PLZT appears to be limited by the appearance of doped cubic zirconia as a secondary phase. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Linear covariant gauges, such as Feynman gauge, are very useful in perturbative calculations. Their non-perturbative formulation is, however, highly non-trivial. In particular, it is a challenge to define linear covariant gauges on a lattice. We consider a class of gauges in lattice gauge theory that coincides with the perturbative definition of linear covariant gauges in the formal continuum limit. The corresponding gauge-fixing procedure is described and analyzed in detail, with an application to the pure SU(2) case. In addition, results for the gluon propagator in the two-dimensional case are given. (C) 2008 Elsevier B.V. All rights reserved.