975 resultados para Johnson-Mehl-Avrami equation
Resumo:
PURPOSE To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. METHODS We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. RESULTS We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. CONCLUSIONS We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain.
Resumo:
Dimensional analysis using π-theorem is applied to the variables associated with plastic deformation. The dimensionless groups thus obtained are then related and rewritten to obtain the constitutive equation. The constants in the constitutive equation are obtained using published flow stress data for carbon steels. The validity of the constitutive equation is tested for steels with up to 1.54 wt%C at temperatures: 850–1200 °C and strain rates: 6 × 10−6–2 × 10−2 s−1. The calculated flow stress agrees favorably with experimental data.
Resumo:
Barrierless chemical reactions have often been modeled as a Brownian motion on a one-dimensional harmonic potential energy surface with a position-dependent reaction sink or window located near the minimum of the surface. This simple (but highly successful) description leads to a nonexponential survival probability only at small to intermediate times but exponential decay in the long-time limit. However, in several reactive events involving proteins and glasses, the reactions are found to exhibit a strongly nonexponential (power law) decay kinetics even in the long time. In order to address such reactions, here, we introduce a model of barrierless chemical reaction where the motion along the reaction coordinate sustains dispersive diffusion. A complete analytical solution of the model can be obtained only in the frequency domain, but an asymptotic solution is obtained in the limit of long time. In this case, the asymptotic long-time decay of the survival probability is a power law of the Mittag−Leffler functional form. When the barrier height is increased, the decay of the survival probability still remains nonexponential, in contrast to the ordinary Brownian motion case where the rate is given by the Smoluchowski limit of the well-known Kramers' expression. Interestingly, the reaction under dispersive diffusion is shown to exhibit strong dependence on the initial state of the system, thus predicting a strong dependence on the excitation wavelength for photoisomerization reactions in a dispersive medium. The theory also predicts a fractional viscosity dependence of the rate, which is often observed in the reactions occurring in complex environments.
Resumo:
[book] The potential of electric light as a new building “material” was recognized in the 1920s and became a useful design tool by the mid-century. Skillful lighting allowed for theatricality, narrative, and a new emphasis on structure and space. The Structure of Light tells the story of the career of Richard Kelly, the field’s most influential figure. Six historians, architects, and practitioners explore Kelly’s unparalleled influence on modern architecture and his lighting designs for some of the 20th century’s most iconic buildings: Philip Johnson’s Glass House; Louis Kahn’s Kimbell Art Museum; Eero Saarinen’s GM Technical Center; and Mies van der Rohe’s Seagram Building, among many others. This beautifully illustrated history demonstrates the range of applications, building types, and artistic solutions he employed to achieve a “nocturnal modernity” that would render buildings evocatively different at night. The survival of Kelly’s rich correspondence and extensive diaries allows an in-depth look at the triumphs and uncertainties of a young profession in the making. The first book to focus on the contributions of a master in the field of architectural lighting, this fascinating volume celebrates the practice’s significance in modern design.
Resumo:
Considering the growing energy needs and concern for environmental degradation, clean and inexhaustible energy sources, e.g solar energy are receiving greater attention for various applications. The use of solar energy systems for low temperature applications reduces the burden on conventional fossil fuels and has little or no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporatorcollector (SEC) is basically an unglazed flat plate collector where refrigerant, like R134a, is used as the working fluid. As the operating temperature of SEC is very low, it collects energy both from solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. The capability of SEC to utilize ambient energy also enables the system to operate at night. Therefore it is not appropriate to use for the evaluation of performance of SEC by conventional efficiency equation where ambient energy and condensation is not considered as energy input in addition to irradiation. In the National University of Singapore, several Solar Assisted Heat Pump (SAHP) systems were built for the evaluation of performance under the metrological condition of Singapore for thermal applications of desalination and SEC was the main component to harness renewable energy. In this paper, the design and performance of SEC are explored. Furthermore, an attempt is made to develop an efficiency equation for SEC and maximum efficiency attained 98% under the meteorological condition of Singapore.
Resumo:
In the first half of the twentieth century the dematerializing of boundaries between enclosure and exposure problematized traditional expectations of the domestic environment. At the same time, as a space of escalating technological control, the modern domestic interior also offered new potential to redefine the meaning and means of habitation. The inherent tension between these opposing forces is particularly evident in the introduction of new electric lighting technology and applications into the modern domestic interior in the mid-twentieth century. Addressing this nexus of technology and domestic psychology, this article examines the critical role of electric lighting in regulating and framing both the public and private occupation of Philip Johnson's New Canaan estate. Exploring the dialectically paired transparent Glass House and opaque Guest House, this study illustrates how Johnson employed electric light to negotiate the visual environment of the estate as well as to help sustain a highly aestheticized domestic lifestyle. Contextualized within the existing literature, this analysis provides a more nuanced understanding of the New Canaan estate as an expression of Johnson's interests as a designer as well as a subversion of traditional suburban conventions.
Resumo:
In the first half of the twentieth century the dematerializing of boundaries between enclosure and exposure problematized traditional acts of “occupation” and understandings of the domestic environment. As a space of escalating technological control, the modern domestic interior offered new potential to re-define the meaning and means of habitation. This shift is clearly expressed in the transformation of electric lighting technology and applications for the modern interior in the mid-twentieth century. Addressing these issues, this paper examines the critical role of electric lighting in regulating and framing both the public and private occupation of Philip Johnson’s New Canaan estate. Exploring the dialectically paired transparent Glass House and opaque Guest House (both 1949), this study illustrates how Johnson employed artificial light to control the visual environment of the estate as well as to aestheticize the performance of domestic space. Looking closely at the use of artificial light to create emotive effects as well as to intensify the experience of occupation, this revisiting of the iconic Glass House and lesser-known Guest House provides a more complex understanding of Johnson’s work and the means with which he inhabited his own architecture. Calling attention to the importance of Johnson serving as both architect and client, and his particular interest in exploring the new potential of architectural lighting in this period, this paper investigates Johnson’s use of electric light to support architectural narratives, maintain visual order and control, and to suit the nuanced desires of domestic occupation.
Resumo:
This investigation aimed to quantify metabolic rate when wearing an explosive ordnance disposal (EOD) ensemble (~33kg) during standing and locomotion; and determine whether the Pandolf load carriage equation accurately predicts metabolic rate when wearing an EOD ensemble during standing and locomotion. Ten males completed 8 trials with metabolic rate measured through indirect calorimetry. Walking in EOD at 2.5, 4.0 and 5.5km·h−1 was significantly (p < 0.05) greater than matched trials without the EOD ensemble by 49% (127W), 65% (213W) and 78% (345W), respectively. Mean bias (95% limits of agreement) between predicted and measured metabolism during standing, 2.5, 4 and 5.5km·h−1 were 47W (19 to 75W); −111W (−172 to −49W); −122W (−189 to −54W) and −158W (−245 to −72W), respectively. The Pandolf equation significantly underestimated measured metabolic rate during locomotion. These findings have practical implications for EOD technicians during training and operation and should be considered when developing maximum workload duration models and work-rest schedules.
Resumo:
The quality of short-term electricity load forecasting is crucial to the operation and trading activities of market participants in an electricity market. In this paper, it is shown that a multiple equation time-series model, which is estimated by repeated application of ordinary least squares, has the potential to match or even outperform more complex nonlinear and nonparametric forecasting models. The key ingredient of the success of this simple model is the effective use of lagged information by allowing for interaction between seasonal patterns and intra-day dependencies. Although the model is built using data for the Queensland region of Australia, the method is completely generic and applicable to any load forecasting problem. The model’s forecasting ability is assessed by means of the mean absolute percentage error (MAPE). For day-ahead forecast, the MAPE returned by the model over a period of 11 years is an impressive 1.36%. The forecast accuracy of the model is compared with a number of benchmarks including three popular alternatives and one industrial standard reported by the Australia Energy Market Operator (AEMO). The performance of the model developed in this paper is superior to all benchmarks and outperforms the AEMO forecasts by about a third in terms of the MAPE criterion.
Resumo:
Benedict-Webb-Rubin equation of state constants for NO, O2, and the equilibrium mixture N2O4 ⇄ 2NO2 are reported.
Resumo:
The association parameter in the diffuswn equaiior, dye fo Wiike one Chong has been interpreted in deferminable properties, thus permitting easily the calculation of the same for unknown systems. The proposed eqyotion a!se holds goods for water as soiute in organic solvenfs. The over-all percentage error remains the sarrse as that of the original equation.
Resumo:
Extended self-similarity (ESS), a procedure that remarkably extends the range of scaling for structure functions in Navier-Stokes turbulence and thus allows improved determination of intermittency exponents, has never been fully explained. We show that ESS applies to Burgers turbulence at high Reynolds numbers and we give the theoretical explanation of the numerically observed improved scaling at both the IR and UV end, in total a gain of about three quarters of a decade: there is a reduction of subdominant contributions to scaling when going from the standard structure function representation to the ESS representation. We conjecture that a similar situation holds for three-dimensional incompressible turbulence and suggest ways of capturing subdominant contributions to scaling.
Resumo:
The electron-energy equation for an atomic radiating plasma is considered in this work. Using the atomic model of Bates, Kingston and McWhirter, the radiation loss-term valid for all optical thicknesses is obtained. A study of the energy gained by electrons in inelastic collisions shows that the radiation loss term can be neglected only for rapidly-decaying or fast-growing plasmas. Emission from optically thin plasmas is considered next and an exact expression is given for the total radiation loss in a recombination continuum. A derivation of the Kramers-Unsöld approximation is presented and the error involved in estimating the total emitted recombination radiation by this approximation is shown to be small.
Resumo:
In this paper we shall study a fractional integral equation in an arbitrary Banach space X. We used the analytic semigroups theory of linear operators and the fixed point method to establish the existence and uniqueness of solutions of the given problem. We also prove the existence of global solution. The existence and convergence of the Faedo–Galerkin solution to the given problem is also proved in a separable Hilbert space with some additional assumptions on the operator A. Finally we give an example to illustrate the applications of the abstract results.
Resumo:
Using Thomé's procedure, the asymptotic solutions of the Frieman and Book equation for the two-particle correlation in a plasma have been obtained in a complete form. The solution is interpreted in terms of the Lorentz distance. The exact expressions for the internal energy and pressure are evaluated and they are found to be a generalization of the result obtained earlier by others.