929 resultados para Ischemia-reperfusion Injury


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stroke, ischemic or hemorrhagic, belongs among the foremost causes of death and disability worldwide. Massive brain swelling is the leading cause of death in large hemispheric strokes and is only modestly alleviated by available treatment. Thrombolysis with tissue plasminogen activator (TPA) is the only approved therapy in acute ischemic stroke, but fear of TPA-mediated hemorrhage is often a reason for withholding this otherwise beneficial treatment. In addition, recanalization of the occluded artery (spontaneously or with thrombolysis) may cause reperfusion injury by promoting brain edema, hemorrhage, and inflammatory cell infiltration. A dominant event underlying these phenomena seems to be disruption of the blood-brain barrier (BBB). In contrast to ischemic stroke, no widely approved clinical therapy exists for intracerebral hemorrhage (ICH), which is associated with poor outcome mainly due to the mass effect of enlarging hematoma and associated brain swelling. Mast cells (MCs) are perivascularly located resident inflammatory cells which contain potent vasoactive, proteolytic, and fibrinolytic substances in their cytoplasmic granules. Experiments from our laboratory showed MC density and their state of granulation to be altered early following focal transient cerebral ischemia, and degranulating MCs were associated with perivascular edema and hemorrhage. (I) Pharmacological MC stabilization led to significantly reduced ischemic brain swelling (40%) and BBB leakage (50%), whereas pharmacological MC degranulation raised these by 90% and 50%, respectively. Pharmacological MC stabilization also revealed a 40% reduction in neutrophil infiltration. Moreover, genetic MC deficiency was associated with an almost 60% reduction in brain swelling, 50% reduction in BBB leakage, and 50% less neutrophil infiltration, compared with controls. (II) TPA induced MC degranulation in vitro. In vivo experiments with post-ischemic TPA administration demonstrated 70- to 100-fold increases in hemorrhage formation (HF) compared with controls HF. HF was significantly reduced by pharmacological MC stabilization at 3 (95%), 6 (75%), and 24 hours (95%) of follow-up. Genetic MC deficiency again supported the role of MCs, leading to 90% reduction in HF at 6 and 24 hours. Pharmacological MC stabilization and genetic MC deficiency were also associated with significant reduction in brain swelling and in neutrophil infiltration. Importantly, these effects translated into a significantly better neurological outcome and lower mortality after 24 hours. (III) Finally, in ICH experiments, pharmacological MC stabilization resulted in significantly less brain swelling, diminished growth in hematoma volume, better neurological scores, and decreased mortality. Pharmacological MC degranulation produced the opposite effects. Genetic MC deficiency revealed a beneficial effect similar to that found with pharmacological MC stabilization. In sum, the role of MCs in these clinically relevant scenarios is supported by a series of experiments performed both in vitro and in vivo. That not only genetic MC deficiency but also drugs targeting MCs could modulate these parameters (translated into better outcome and decreased mortality), suggests a potential therapeutic approach in a number of highly prevalent cerebral insults in which extensive tissue injury is followed by dangerous brain swelling and inflammatory cell infiltration. Furthermore, these experiments could hint at a novel therapy to improve the safety of thrombolytics, and a potential cellular target for those seeking novel forms of treatment for ICH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: Myocardial ischemia/reperfusion (I/R) is associated with mitochondrial dysfunction and subsequent cardiomyocyte death. The generation of excessive quantities of reactive oxygen species (ROS) and resultant damage to mitochondrial enzymes is considered an important mechanism underlying reperfusion injury. Mitochondrial complex I can exist in two interconvertible states: active (A) and deactive or dormant (D). We have studied the active/deactive (A/D) equilibrium in several tissues under ischemic conditions in vivo and investigated the sensitivity of both forms of the heart enzyme to ROS.

Results: We found that in the heart, t½ of complex I deactivation during ischemia was 10?min, and that reperfusion resulted in the return of A/D equilibrium to its initial level. The rate of superoxide generation by complex I was higher in ischemic samples where content of the D-form was higher. Only the D-form was susceptible to inhibition by H2O2 or superoxide, whereas turnover-dependent activation of the enzyme resulted in formation of the A-form, which was much less sensitive to ROS. The mitochondrial-encoded subunit ND3, most likely responsible for the sensitivity of the D-form to ROS, was identified by redox difference gel electrophoresis.

Innovation: A combined in vivo and biochemical approach suggests that sensitivity of the mitochondrial system to ROS during myocardial I/R can be significantly affected by the conformational state of complex I, which may therefore represent a new therapeutic target in this setting.

Conclusion: The presented data suggest that transition of complex I into the D-form in the absence of oxygen may represent a key event in promoting cardiac injury during I/R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Damage following ischemia and reperfusion (I/R) is common in the intestine and can be caused during abdominal surgery, in several disease states and following intestinal transplantation. Most studies have concentrated on damage to the mucosa, although published evidence also points to effects on neurons. Moreover, alterations of neuronally controlled functions of the intestine persist after I/R. The present study was designed to investigate the time course of damage to neurons and the selectivity of the effect of I/R damage for specific types of enteric neurons. A branch of the superior mesenteric artery supplying the distal ileum of anesthetised guinea pigs was occluded for 1 h and the animals were allowed to recover for 2 h to 4 weeks before tissue was taken for the immunohistochemical localization of markers of specific neuron types in tissues from sham and I/R animals. The dendrites of neurons with nitric oxide synthase (NOS) immunoreactivity, which are inhibitory motor neurons and interneurons, were distorted and swollen by 24 h after I/R and remained enlarged up to 28 days. The total neuron profile areas (cell body plus dendrites) increased by 25%, but the sizes of cell bodies did not change significantly. Neurons of type II morphology (intrinsic primary afferent neurons), revealed by NeuN immunoreactivity, were transiently reduced in cell size, at 24 h and 7 days. These neurons also showed signs of minor cell surface blebbing. Calretinin neurons, many of which are excitatory motor neurons, were unaffected. Thus, this study revealed a selective damage to NOS neurons that was observed at 24 h and persisted up to 4 weeks, without a significant change in the relative numbers of NOS neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose We investigated the effects of ischemia/reperfusion in the intestine (I/R-i) on purine receptor P2X(2)-immunoreactive (IR) neurons of the rat ileum. Methods The superior mesenteric artery was occluded for 45 min with an atraumatic vascular clamp and animals were sacrificed 4 h later. Neurons of the myenteric and submucosal plexuses were evaluated for immunoreactivity against the P2X(2) receptor, nitric oxide synthase (NOS), choline acetyl transferase (ChAT), calbindin, and calretinin. Results Following I/R-i, we observed a decrease in P2X(2) receptor immunoreactivity in the cytoplasm and surface membranes of neurons of the myenteric and submucosal plexuses. These studies also revealed an absence of calbindin-positive neurons in the I/R-i group. In addition, the colocalization of the P2X(2) receptor with NOS, ChAT, and calretinin immunoreactivity in the myenteric plexus was decreased following I/R-i. Likewise, the colocalization between P2X(2) and calretinin in neurons of the submucosal plexus was also reduced. In the I/R-i group, there was a 55.8% decrease in the density of neurons immunoreactive (IR) for the P2X(2) receptor, a 26.4% reduction in NOS-IR neuron, a 25% reduction in ChAT-IR neuron, and a 47% reduction in calretinin-IR neuron. The density of P2X(2) receptor and calretinin-IR neurons also decreased in the submucosal plexus of the I/R-i group. In the myenteric plexus, P2X(2)-IR, NOS-IR, ChAT-IR and calretinin-IR neurons were reduced in size by 50%, 49.7%, 42%, and 33%, respectively, in the I/R-i group; in the submucosal plexus, P2X(2)-IR and calretinin-IR neurons were reduced in size by 56% and 72.6%, respectively. Conclusions These data demonstrate that ischemia/reperfusion of the intestine affects the expression of the P2X(2) receptor in neurons of the myenteric and submucosal plexus, as well as density and size of neurons in this population. Our findings indicate that I/R-i induces changes in P2X(2)-IR enteric neurons that could result in alterations in intestinal motility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ischemia and reperfusion of the small intestine disrupts gut barrier, causes bacterial translocation and activates inflammatory responses. An experimental study was planned to evaluate if 99mTc labelled Escherichia coli translocates to mesenteric lymph nodes, liver, spleen, lung and serum of rats submitted to mesenteric ischemia/reperfusion. Additionally, it was observed if the time of reperfusion influences the level of translocation. METHODS: Forty male Wistar rats underwent 45 minutes of gut ischemia by occlusion of the superior mesenteric artery. The translocation of labelled bacteria to different organs and portal serum was determined in rats reperfused for 30 minutes, 24 hours, sham(S) and controls(C), using radioactivity count and colony forming units/g (CFU). RESULTS: All the organs from rats observed for 24 hours after reperfusion had higher levels of radioactivity and positive cultures (CFU) than did the organs of rats reperfused for 30 minutes, C and S, except in the spleen (p<0,01). CONCLUSION: The results of this study indicated that intestinal ischemia/reperfusion led to bacterial translocation, mostly after 24 hours of reperfusion

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Acute kidney injury (AKI) following prolonged laparoscopy is a documented phenomenon. Carbon dioxide pneumoperitoneum induces oxidative stress. Previous experimental studies have shown that the antioxidant, N-acetylcysteine, protects the rat from AKI following ischemia-reperfusion. The aim of this study was to evaluate the effects of N-acetylcysteine (NAC) on rat renal function after prolonged pneumoperitoneum. Methods. Normal rats treated or not with NAC were submitted to abdominal CO2 insufflation of 10 mmHg, at short and long periods of time of 1 and 3 h, respectively, and evaluated at 24, 72 h, and 1 wk after deinsufflation. Glomerular filtration rate (GFR) was measured by inulin clearance and oxidative stress was evaluated by serum thiobarbituric acid reactive substances (TBARS) Results. No significant alterations in GFR were observed in normal animals submitted to the pneumoperitoneum of 1 h and evaluated after 24 h desufflation. With 3 h of pneumoperitoneum, a significant and progressive decrease in GFR occurred 24 and 72 h after desufflation with an increase in serum TBARS. GFR returned to normal levels a week later. In the NAC-treated rats, a complete protection against GFR drops was observed 24 and 72 h following 3 h of pneumoperitoneum associated with a decrease in TBARS. Conclusion. These results suggest that NAC protects against acute kidney injury following prolonged pneumoperitoneum. These findings have significant clinical implications. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Epsilon-protein kinase C (epsilon PKC) protects the heart from ischemic injury. However, the mechanism(s) of epsilon PKC cardioprotection is still unclear. Identification of the epsilon PKC targets may aid in elucidating the epsilon PKC-mediated cardioprotective mechanisms. Previous studies, using epsilon PKC transgenic mice and difference in gel electrophoresis, identified proteins involved in glucose metabolism, the expression of which was modified by epsilon PKC. Those studies were accompanied by metabolomic analysis, suggesting that increased glucose oxidation may be responsible for the cardioprotective effect of epsilon PKC. Whether these epsilon PKC-mediated alterations were because of differences in protein expression or phosphorylation was not determined. Methods and Results: In the present study, we used an epsilon PKC -specific activator peptide, psi epsilon RACK, combined with phosphoproteomics, to find epsilon PKC targets, and identified that the proteins whose phosphorylation was altered by selective activation of epsilon PKC were mostly mitochondrial proteins. Analysis of the mitochondrial phosphoproteome led to the identification of 55 spots, corresponding to 37 individual proteins, exclusively phosphorylated, in the presence of psi epsilon RACK. The majority of the proteins identified were involved in glucose and lipid metabolism, components of the respiratory chain as well as mitochondrial heat shock proteins. Conclusions: The protective effect of epsilon PKC during ischemia involves phosphorylation of several mitochondrial proteins involved in glucose and lipid metabolism and oxidative phosphorylation. Regulation of these metabolic pathways by epsilon PKC phosphorylation may lead to epsilon PKC-mediated cardioprotection induced by psi epsilon RACK. (Circ J 2012; 76: 1476-1485)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation of heme oxygenase-1 (HO-1) appears to be an endogenous defensive mechanism used by cells to reduce inflammation and tissue damage in a number of injury models. HO-1, a stress-responsive enzyme that catabolizes heme into carbon monoxide (CO), biliverdin and iron, has previously been shown to protect grafts from ischemia/reperfusion and rejection. In addition, the products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin, have been shown to exert protective effects in the liver against a number of stimuli, as in chronic hepatitis C and in transplanted liver grafts. Furthermore, the induction of HO-1 expression can protect the liver against damage caused by a number of chemical compounds. More specifically, the CO derived from HO-1-mediated heme catabolism has been shown to be involved in the regulation of inflammation; furthermore, administration of low concentrations of exogenous CO has a protective effect against inflammation. Both murine and human HO-1 deficiencies have systemic manifestations associated with iron metabolism, such as hepatic overload (with signs of a chronic hepatitis) and iron deficiency anemia (with paradoxical increased levels of ferritin). Hypoxia induces HO-1 expression in multiple rodent, bovine and monkey cell lines, but interestingly, hypoxia represses expression of the human HO-1 gene in a variety of human cell types (endothelial cells, epithelial cells, T cells). These data suggest that HO-1 and CO are promising novel therapeutic molecules for patients with inflammatory diseases. In this review, we present what is currently known regarding the role of HO-1 in liver injuries and in particular, we focus on the implications of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against chemically induced injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The migration of polymorphonuclear granulocytes (PMN) into the brain parenchyma and release of their abundant proteases are considered the main causes of neuronal cell death and reperfusion injury following ischemia. Yet, therapies targeting PMN egress have been largely ineffective. To address this discrepancy we investigated the temporo-spatial localization of PMNs early after transient ischemia in a murine transient middle cerebral artery occlusion (tMCAO) model and human stroke specimens. Using specific markers that distinguish PMN (Ly6G) from monocytes/macrophages (Ly6C) and that define the cellular and basement membrane boundaries of the neurovascular unit (NVU), histology and confocal microscopy revealed that virtually no PMNs entered the infarcted CNS parenchyma. Regardless of tMCAO duration, PMNs were mainly restricted to luminal surfaces or perivascular spaces of cerebral vessels. Vascular PMN accumulation showed no spatial correlation with increased vessel permeability, enhanced expression of endothelial cell adhesion molecules, platelet aggregation or release of neutrophil extracellular traps. Live cell imaging studies confirmed that oxygen and glucose deprivation followed by reoxygenation fail to induce PMN migration across a brain endothelial monolayer under flow conditions in vitro. The absence of PMN infiltration in infarcted brain tissues was corroborated in 25 human stroke specimens collected at early time points after infarction. Our observations identify the NVU rather than the brain parenchyma as the site of PMN action after CNS ischemia and suggest reappraisal of targets for therapies to reduce reperfusion injury after stroke.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experimental evidence suggests that reactive nitrogen oxide species can contribute significantly to postischemic myocardial injury. The aim of the present study was to evaluate the role of two reactive nitrogen oxide species, nitroxyl (NO−) and nitric oxide (NO⋅), in myocardial ischemia and reperfusion injury. Rabbits were subjected to 45 min of regional myocardial ischemia followed by 180 min of reperfusion. Vehicle (0.9% NaCl), 1 μmol/kg S-nitrosoglutathione (GSNO) (an NO⋅ donor), or 3 μmol/kg Angeli’s salt (AS) (a source of NO−) were given i.v. 5 min before reperfusion. Treatment with GSNO markedly attenuated reperfusion injury, as evidenced by improved cardiac function, decreased plasma creatine kinase activity, reduced necrotic size, and decreased myocardial myeloperoxidase activity. In contrast, the administration of AS at a hemodynamically equieffective dose not only failed to attenuate but, rather, aggravated reperfusion injury, indicated by an increased left ventricular end diastolic pressure, myocardial creatine kinase release and necrotic size. Decomposed AS was without effect. Co-administration of AS with ferricyanide, a one-electron oxidant that converts NO− to NO⋅, completely blocked the injurious effects of AS and exerted significant cardioprotective effects similar to those of GSNO. These results demonstrate that, although NO⋅ is protective, NO− increases the tissue damage that occurs during ischemia/reperfusion and suggest that formation of nitroxyl may contribute to postischemic myocardial injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Administration of human recombinant erythropoietin ( EPO) at time of acute ischemic renal injury ( IRI) inhibits apoptosis, enhances tubular epithelial regeneration, and promotes renal functional recovery. The present study aimed to determine whether darbepoetin-alfa ( DPO) exhibits comparable renoprotection to that afforded by EPO, whether pro or antiapoptotic Bcl-2 proteins are involved, and whether delayed administration of EPO or DPO 6 h following IRI ameliorates renal dysfunction. The model of IRI involved bilateral renal artery occlusion for 45 min in rats ( N = 4 per group), followed by reperfusion for 1-7 days. Controls were sham-operated. Rats were treated at time of ischemia or sham operation ( T0), or post-treated ( 6 h after the onset of reperfusion, T6) with EPO ( 5000 IU/kg), DPO ( 25 mu g/kg), or appropriate vehicle by intraperitoneal injection. Renal function, structure, and immunohistochemistry for Bcl-2, Bcl-XL, and Bax were analyzed. DPO or EPO at T0 significantly abrogated renal dysfunction in IRI animals ( serum creatinine for IRI 0.17 +/- 0.05mmol/l vs DPO-IRI 0.08 +/- 0.03mmol/l vs EPO-IRI 0.04 +/- 0.01mmol/l, P = 0.01). Delayed administration of DPO or EPO ( T6) also significantly abrogated subsequent renal dysfunction ( serum creatinine for IRI 0.17 +/- 0.05mmol/l vs DPO-IRI 0.06 +/- 0.01mmol/l vs EPO-IRI 0.03 +/- 0.03mmol/l, P = 0.01). There was also significantly decreased tissue injury ( apoptosis, P < 0.05), decreased proapoptotic Bax, and increased regenerative capacity, especially in the outer stripe of the outer medulla, with DPO or EPO at T0 or T6. These results reaffirm the potential clinical application of DPO and EPO as novel renoprotective agents for patients at risk of ischemic acute renal failure or after having sustained an ischemic renal insult.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ischemia and reperfusion of the small intestine disrupts gut barrier, causes bacterial translocation and activates inflammatory responses. An experimental study was planned to evaluate if 99mTc labelled Escherichia coli translocates to mesenteric lymph nodes, liver, spleen, lung and serum of rats submitted to mesenteric ischemia/reperfusion. Additionally, it was observed if the time of reperfusion influences the level of translocation. METHODS: Forty male Wistar rats underwent 45 minutes of gut ischemia by occlusion of the superior mesenteric artery. The translocation of labelled bacteria to different organs and portal serum was determined in rats reperfused for 30 minutes, 24 hours, sham(S) and controls(C), using radioactivity count and colony forming units/g (CFU). RESULTS: All the organs from rats observed for 24 hours after reperfusion had higher levels of radioactivity and positive cultures (CFU) than did the organs of rats reperfused for 30 minutes, C and S, except in the spleen (p<0,01). CONCLUSION: The results of this study indicated that intestinal ischemia/reperfusion led to bacterial translocation, mostly after 24 hours of reperfusion

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ischemia and reperfusion of the small intestine disrupts gut barrier, causes bacterial translocation and activates inflammatory responses. An experimental study was planned to evaluate if 99mTc labelled Escherichia coli translocates to mesenteric lymph nodes, liver, spleen, lung and serum of rats submitted to mesenteric ischemia/reperfusion. Additionally, it was observed if the time of reperfusion influences the level of translocation. METHODS: Forty male Wistar rats underwent 45 minutes of gut ischemia by occlusion of the superior mesenteric artery. The translocation of labelled bacteria to different organs and portal serum was determined in rats reperfused for 30 minutes, 24 hours, sham(S) and controls(C), using radioactivity count and colony forming units/g (CFU). RESULTS: All the organs from rats observed for 24 hours after reperfusion had higher levels of radioactivity and positive cultures (CFU) than did the organs of rats reperfused for 30 minutes, C and S, except in the spleen (p<0,01). CONCLUSION: The results of this study indicated that intestinal ischemia/reperfusion led to bacterial translocation, mostly after 24 hours of reperfusion