996 resultados para Ingegneria sociale sicurezza hacking penetration testing
Resumo:
Protein transduction domains (PTDs) were recently demonstrated to increase the penetration of the model peptide P20 when the PTD and P20 were covalently attached. Here, we evaluated whether non-covalently linked PTDs were capable of increasing the skin penetration of P20. Two different PTDs were studied: YARA and WLR. Porcine ear skin mounted in a Franz diffusion cell was used to assess the penetration of P20 in the stratum corneum (SC) and viable skin (VS); VS consists of dermis and epidermis without SC. The transdermal delivery of P20 was also assessed. At 1 mM, YARA promoted a 2.33-fold increase in the retention of P20 in the SC but did not significantly increase the amount of P20 that reached VS. WLR significantly increased (2.88-fold) the penetration of P20 in VS. Compared to the non-attached form, the covalently linked WLR fragment was two times more effective in promoting the penetration of P20 into VS. None of the PTDs promoted transdermal delivery of P20 at 4 h post-application. It was concluded that selected non-covalently linked PTDs can be used as a penetration enhancer, but greater skin penetration efficiency can be achieved by covalently binding the PTD to the therapeutic agent. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Meso-tetra-(N-methylpiridinium-4-yl)-porphyrin (TMPyP) and meso-tetra-(4-sulfonatophenyl)-porphyrin (TPPS(4)) are photosensitizing drugs (PS) used in photodynamic therapy (PDT). Based on the fact that these compounds present similar chemical structures but opposite charges at pH levels near physiological conditions, this work aims to evaluate the in vitro and in vivo influence of these electrical charges on the iontophoretic delivery of TMPyP and TPPS4, attempting to achieve maximum accumulation of PS in skin tissue. The iontophoretic transport of these drugs from a hydrophilic gel was investigated in vitro using porcine ear skin and vertical, flow-through diffusion cells. In vivo experiments using rats were also carried out, and the penetration of the PSs was analyzed by fluorescence microscopy to visualize the manner of how these compounds were distributed in the skin after a short period of iontophoresis application. In vitro, both passive and iontophoretic delivery of the positively charged TMPyP were much greater (20-fold and 67-fold, respectively) than those of the negatively charged TPPS(4). TPPS(4) iontophoresis in vivo increased the fluorescence of the skin only in the very superficial layers. On the other hand, iontophoresis of the positively charged drug expressively increased the rat epidermis and dermis fluorescence, indicating high amounts of this drug throughout the skin layers. Moreover, TMPyP was homogeneously distributed around and into the nuclei of the skin cells, suggesting its potential use in topical PDT. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The skin is a large and accessible area of the body, offering the possibility to be used as an alternative route for drug delivery. In the last few years strong progress has been made on the developing of nanoparticulate systems for specific applications. The interaction of such small particles with human skin and their possible penetration attracted some interest from toxicological as well as from drug delivery perspectives. As size is assumed to play a key role, the aim of the present work was to investigate the penetration profile of very small model particles (similar to 4 nm) into excised human skin under conditions chosen to mimic the in vivo situation. Possible application procedures such as massaging the formulation (5 to 10 minutes) were analyzed by non-invasive multiphoton- and confocal laser scanning microscopy (MPM, CLSM). Furthermore, the application on damaged skin was taken into account by deliberately removing parts of the stratum corneum. Although it was clearly observed that the mechanical actions affected the distribution pattern of the QDs on the skin surface, there was no evidence of penetration into the skin in all cases tested. QDs could be found in deeper layers only after massaging of damaged skin for 10 min. Taking these data into account, obtained on the gold standard human skin, the potential applications of nanoparticulate systems to act as carrier delivering drugs into intact skin might be limited and are only of interest for partly damaged skin.
Resumo:
Topical delivery of lycopene is a convenient way to supplement cutaneous levels of antioxidants. In this study, lycopene was incorporated (0.05%, w/w) in two microemulsions containing BRIJ-propylene glycol (2:1, w/w, surfactant blend) but different oil phases: mono/diglycerides of capric and caprylic acids (MG) or triglycerides of the same fatty acids (TG). Microemulsions containing MG and TG were isotropic, fluid, and clear, with internal phase diameters of 27 and 52 nm, respectively. Both MG- or TG-containing microemulsions markedly increased lycopene penetration in the stratum corneum, (6- and 3.6-fold, respectively) and in viable layers of porcine ear skin 2 (from undetected to 172.6 +/- 41.1 and 103.1 +/- 7.2 ng/cm(2), respectively) compared to a control solution. To assure that lycopene delivered to the skin was active, the antioxidant activity of skin treated with MG-containing microemulsion was determined by CUPRAC assay, and found to be 10-fold higher than untreated skin. The cytotoxicity of MG-containing microemulsion in cultured fibroblasts was similar to propylene glycol (considered safe) and significantly less than of sodium lauryl sulfate (a moderate-to-severe irritant) at 1-50 mu g/mL. These results demonstrate that the MG-containing microemulsion is an efficient and safe system to increase lycopene delivery to the skin and the antioxidant activity in the tissue. (C) 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:1346-1357, 2010
Resumo:
The aim of this research was to perform a stability testing of spray- and spouted bed-dried extracts of Passiflora alata Dryander (Passion flower) under stress storage conditions. Spouted bed- and spray-dried extracts were characterized by determination of the average particle diameter (dP), apparent moisture content (XP), total flavonoid content (TF), and vitexin content. Smaller and more irregular particles were generated by the spouted bed system due to a higher attrition rate (surface erosion) inside the dryer. The SB dryer resulted in an end product with higher concentration of flavonoids (approximate to 10%) and lower moisture content (1.6%, dry basis) than the spray dryer, even with both dryers working at similar inlet drying air temperature and ratio between the extract feed flow rate to drying air flow rate (Ws/Wg). Samples of the spouted bed- and spray-dried extracts were stored at two different temperatures (34 and 45 degrees C) and two different relative humidities (52 and 63% RH for 34 degrees C; 52 and 60% RH for 45 degrees C) in order to perform the stability testing. The dried extracts were stored for 28 days and were analyzed every 4 days. The flavonoid vitexin served as the marker compound, which was assayed during the storage period. Results revealed shelf lives ranging from 9 to 184 days, depending on the drying process and storage conditions.
Resumo:
The aim of this work was to investigate doxorubicin (DOX) percutaneous absorption and retention in the skin following iontophoresis. The convective flow contribution to the overall electrotransport of DOX was also elucidated for a non-ionic hyd roxyethylcellulose gel and a cationic chitosan gel. Moreover, the cytotoxicity of DOX and its formulations, with and without low electrical current, was verified. It was observed that iontophoresis of DOX significantly increased the skin permeation and retention of the drug. In addition, the electroosmotic flow was dramatically reduced when DOX was added to the non-ionic gel, thereby indicating that the drug interacted with negative charges in the skin. Interestingly, electroosmosis was also significantly reduced when the iontophoresis was performed in the presence of the chitosan gel, but in the absence of DOX. Consequently, the transport of an electroosmotic marker from this gel almost disappeared when the positively charged drug was added to the cationic gel. These results indicated that chitosan appeared to interact with negative charges in the skin. Hence, this carrier not only reduced electroosmotic flow, but also released DOX from ionic interactions with these sites and improved its diffusion to deeper skin layers. The application of the low electrical current directly to melanoma cells increased DOX cytotoxicity by nearly three-fold, which was probably due to membrane permeation. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
It was intended to examine the in vitro penetration of cisplatin (CIS) through porcine skin in the presence of different concentrations of monoolein (MO) as well as to verify the main barrier for CIS skin penetration. In vitro skin penetration of CIS was studied from propylene glycol (PG) solutions containing 0%, 5%, 10%, and 20% of MO using Franz-type diffusion cell and porcine ear skin. Pretreatment experiments with MO and experiments with skin without stratum corneum (SC) were also carried out. Skin penetration studies of CIS showed that the presence of MO doubled the drug permeation through the intact skin. However, permeation studies through the skin without SC caused only a small enhancement of CIS permeation compared to intact skin. Moreover, pretreatment of skin with MO formulations did not show any significant increase in the flux of the drug. In conclusion, MO did not act as a real penetration enhancer for CIS, but it increased the drug partition to the receptor solution improving CIS transdermal permeation. The absence of improvement in drug permeation by MO pretreatment and by the removal of SC indicates that the SC is not the main barrier for the permeation of the metal coordination compound. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
We present an analysis of previously published measurements of the London penetration depth of layered organic superconductors. The predictions of the BCS theory of superconductivity are shown to disagree with the measured zero temperature, in plane, London penetration depth by up to two orders of magnitude. We find that fluctuations in the phase of the superconducting order parameter do not determine the superconducting critical temperature as the critical temperature predicted for a Kosterlitz–Thouless transition is more than an order of magnitude greater than is found experimentally for some materials. This places constraints on theories of superconductivity in these materials.
Resumo:
The process of enzyme immobilization under the diffusion-controlled regime (i.e., fast attachment of enzyme compared to its diffusion) is modeled and theoretically solved in this article. Simple and compact solutions for the penetration depth of immobilized enzyme and the bulk enzyme concentration versus time are presented. Furthermore, the conditions for the validity of our solutions are also given in this article so that researchers can discover when the theoretical solutions can be applied to their systems.
Resumo:
This paper reports the application of linearly increasing stress testing (LIST) to the study of stress corrosion cracking (SCC) of carbon steel in 4 N NaNO3 and in Bayer liquor. LIST is similar to the constant extension-rate testing (CERT) methodology with the essential difference that the LIST is load controlled whereas the CERT is displacement controlled. The main conclusion is that LIST is suitable for the study of the SCC of carbon steels in 4 N NaNO3 and in Bayer liquor. The low crack velocity in Bayer liquor and a measured maximum stress close to that of the reference specimen in air both indicate that a low applied stress rate is required to study SCC in this system. (C) 1998 Chapman & Hall.
Resumo:
To simulate cropping systems, crop models must not only give reliable predictions of yield across a wide range of environmental conditions, they must also quantify water and nutrient use well, so that the status of the soil at maturity is a good representation of the starting conditions for the next cropping sequence. To assess the suitability for this task a range of crop models, currently used in Australia, were tested. The models differed in their design objectives, complexity and structure and were (i) tested on diverse, independent data sets from a wide range of environments and (ii) model components were further evaluated with one detailed data set from a semi-arid environment. All models were coded into the cropping systems shell APSIM, which provides a common soil water and nitrogen balance. Crop development was input, thus differences between simulations were caused entirely by difference in simulating crop growth. Under nitrogen non-limiting conditions between 73 and 85% of the observed kernel yield variation across environments was explained by the models. This ranged from 51 to 77% under varying nitrogen supply. Water and nitrogen effects on leaf area index were predicted poorly by all models resulting in erroneous predictions of dry matter accumulation and water use. When measured light interception was used as input, most models improved in their prediction of dry matter and yield. This test highlighted a range of compensating errors in all modelling approaches. Time course and final amount of water extraction was simulated well by two models, while others left up to 25% of potentially available soil water in the profile. Kernel nitrogen percentage was predicted poorly by all models due to its sensitivity to small dry matter changes. Yield and dry matter could be estimated adequately for a range of environmental conditions using the general concepts of radiation use efficiency and transpiration efficiency. However, leaf area and kernel nitrogen dynamics need to be improved to achieve better estimates of water and nitrogen use if such models are to be use to evaluate cropping systems. (C) 1998 Elsevier Science B.V.
Resumo:
Over half a million heroin misusers receive oral methadone maintenance treatment world-wide1 but the maintenance prescription of injectable opioid drugs, like heroin, remains controversial. In 1992 Switzerland began a large scale evaluation of heroin and other injectable opiate prescribing that eventually involved 1035 misusers. 2 3 The results of the evaluation have recently been reported.4 These show that it was feasible to provide heroin by intravenous injection at a clinic, up to three times a day, for seven days a week. This was done while maintaining good drug control, good order, client safety, and staff morale. Patients were stabilised on 500 to 600 mg heroin daily without evidence of increasing tolerance. Retention in treatment was 89% at six months and 69% at 18 months.4 The self reported use of non-prescribed heroin fell signifianctly, but other drug use was minimally affected. The death rate was 1% per year, and there were no deaths from overdose among participants . . . [Full text of this article]
Resumo:
Aims The penetration of active ingredients from topically applied anti-inflammatory pharmaceutical products into tissues below the skin is the basis of their therapeutic efficacy. There is still controversy as to whether these agents are capable of direct penetration by diffusion through the tissues or whether redistribution in the systemic circulation is responsible for their tissue deposition below the application site. Methods The extent of direct penetration of salicylate from commercial ester and salt formulations into the dermal and subcutaneous tissue of human volunteers was determined using the technique of cutaneous microdialysis. We also examined differences in the extent of hydrolysis of the methylester of salicylate applied topically in human volunteers and in vitro skin diffusion cells using full-thickness skin and epidermal membranes. Results The present study showed that whilst significant levels of salicylate could be detected in the dermis and subcutaneous tissue of volunteers treated with the methylsalicylate formulation, negligible levels of salicylate were seen following application of the triethanolamine salicylate formulation. The tissue levels of salicylate from the methylsalicylate formulation were approx. 30-fold higher than the plasma concentrations. Conclusion The absorption and tissue concentration profiles for the commercial methylsalicylate formulation are indicative of direct tissue penetration and not solely redistribution by the systemic blood supply.
Resumo:
Purpose. To study epidermal and polyethylene membrane penetration and retention of the sunscreen benzophenone-3 (BP) from a range of single solvent vehicles and evaluate solvent effects on permeability parameters. Methods. The solubility of BP was measured in a number of solvents. Penetration of BP across human epidermis and high density polyethylene (HDPE) membranes was studied from 50% saturated solutions in each solvent. Results. Maximal BP fluxes from the solvents across the two membranes varied widely. Highest fluxes were observed from 90% ethanol (EtOH) for epidermis and from isopropyl myristate (IPM) and C12-15 benzoate alcohols (C12-15 BA) for HDPE membrane. Both the flux and estimated permeability coefficient and skin-vehicle partitioning of BP appeared to be related to the vehicle solubility parameter (delta(v)). The major effects of solvents on BP flux appear to be via changes in BP diffusivity through the membranes. Conclusions. Minimal penetration of sunscreens such as BP is best achieved by choosing vehicles with a delta(v) substantially different to the solubility parameter of the membrane.