788 resultados para Inequality measures
Resumo:
We present a new approach to spoken language modeling for language identification (LID) using the Lempel-Ziv-Welch (LZW) algorithm. The LZW technique is applicable to any kind of tokenization of the speech signal. Because of the efficiency of LZW algorithm to obtain variable length symbol strings in the training data, the LZW codebook captures the essentials of a language effectively. We develop two new deterministic measures for LID based on the LZW algorithm namely: (i) Compression ratio score (LZW-CR) and (ii) weighted discriminant score (LZW-WDS). To assess these measures, we consider error-free tokenization of speech as well as artificially induced noise in the tokenization. It is shown that for a 6 language LID task of OGI-TS database with clean tokenization, the new model (LZW-WDS) performs slightly better than the conventional bigram model. For noisy tokenization, which is the more realistic case, LZW-WDS significantly outperforms the bigram technique
Resumo:
Time series classification deals with the problem of classification of data that is multivariate in nature. This means that one or more of the attributes is in the form of a sequence. The notion of similarity or distance, used in time series data, is significant and affects the accuracy, time, and space complexity of the classification algorithm. There exist numerous similarity measures for time series data, but each of them has its own disadvantages. Instead of relying upon a single similarity measure, our aim is to find the near optimal solution to the classification problem by combining different similarity measures. In this work, we use genetic algorithms to combine the similarity measures so as to get the best performance. The weightage given to different similarity measures evolves over a number of generations so as to get the best combination. We test our approach on a number of benchmark time series datasets and present promising results.
Resumo:
We report an experimental study of recently formulated entropic Leggett-Garg inequality (ELGI) by Usha Devi et al. Phys. Rev. A 87, 052103 (2013)]. This inequality places a bound on the statistical measurement outcomes of dynamical observables describing a macrorealistic system. Such a bound is not necessarily obeyed by quantum systems, and therefore provides an important way to distinguish quantumness from classical behavior. Here we study ELGI using a two-qubit nuclear magnetic resonance system. To perform the noninvasive measurements required for the ELGI study, we prepare the system qubit in a maximally mixed state as well as use the ``ideal negative result measurement'' procedure with the help of an ancilla qubit. The experimental results show a clear violation of ELGI by over four standard deviations. These results agree with the predictions of quantum theory. The violation of ELGI is attributed to the fact that certain joint probabilities are not legitimate in the quantum scenario, in the sense they do not reproduce all the marginal probabilities. Using a three-qubit system, we also demonstrate that three-time joint probabilities do not reproduce certain two-time marginal probabilities.
Resumo:
This paper proposes an automatic acoustic-phonetic method for estimating voice-onset time of stops. This method requires neither transcription of the utterance nor training of a classifier. It makes use of the plosion index for the automatic detection of burst onsets of stops. Having detected the burst onset, the onset of the voicing following the burst is detected using the epochal information and a temporal measure named the maximum weighted inner product. For validation, several experiments are carried out on the entire TIMIT database and two of the CMU Arctic corpora. The performance of the proposed method compares well with three state-of-the-art techniques. (C) 2014 Acoustical Society of America
Resumo:
The performance of prediction models is often based on ``abstract metrics'' that estimate the model's ability to limit residual errors between the observed and predicted values. However, meaningful evaluation and selection of prediction models for end-user domains requires holistic and application-sensitive performance measures. Inspired by energy consumption prediction models used in the emerging ``big data'' domain of Smart Power Grids, we propose a suite of performance measures to rationally compare models along the dimensions of scale independence, reliability, volatility and cost. We include both application independent and dependent measures, the latter parameterized to allow customization by domain experts to fit their scenario. While our measures are generalizable to other domains, we offer an empirical analysis using real energy use data for three Smart Grid applications: planning, customer education and demand response, which are relevant for energy sustainability. Our results underscore the value of the proposed measures to offer a deeper insight into models' behavior and their impact on real applications, which benefit both data mining researchers and practitioners.
Resumo:
The study introduces two new alternatives for global response sensitivity analysis based on the application of the L-2-norm and Hellinger's metric for measuring distance between two probabilistic models. Both the procedures are shown to be capable of treating dependent non-Gaussian random variable models for the input variables. The sensitivity indices obtained based on the L2-norm involve second order moments of the response, and, when applied for the case of independent and identically distributed sequence of input random variables, it is shown to be related to the classical Sobol's response sensitivity indices. The analysis based on Hellinger's metric addresses variability across entire range or segments of the response probability density function. The measure is shown to be conceptually a more satisfying alternative to the Kullback-Leibler divergence based analysis which has been reported in the existing literature. Other issues addressed in the study cover Monte Carlo simulation based methods for computing the sensitivity indices and sensitivity analysis with respect to grouped variables. Illustrative examples consist of studies on global sensitivity analysis of natural frequencies of a random multi-degree of freedom system, response of a nonlinear frame, and safety margin associated with a nonlinear performance function. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In this article, we propose a C-0 interior penalty ((CIP)-I-0) method for the frictional plate contact problem and derive both a priori and a posteriori error estimates. We derive an abstract error estimate in the energy norm without additional regularity assumption on the exact solution. The a priori error estimate is of optimal order whenever the solution is regular. Further, we derive a reliable and efficient a posteriori error estimator. Numerical experiments are presented to illustrate the theoretical results. (c) 2015Wiley Periodicals, Inc.
Resumo:
Resumen: En este trabajo, calculamos y analizamos el Índice de Severidad de la pobreza o squared poverty gap para el Gran Buenos Aires, en el período 1995-2006. Este índice es una de las tres medidas más conocidas correspondientes a la clase FGT (Foster, Greer and Thorbecke 1984), aunque menos utilizada que la incidencia o head count ratio (calculado por el INDEC), y la brecha de pobreza o poverty gap. El Índice de Severidad de la pobreza tiene en cuenta no sólo la distancia que separa a los pobres de la línea de pobreza (como en el caso de la brecha de pobreza) sino también la desigualdad entre los pobres. Es decir, le da un mayor peso a los hogares que están más alejados de la línea de pobreza. Por lo tanto, este índice cumple con el axioma de transferencia, a diferencia de los otros dos. Calculamos el Índice de Severidad tanto a nivel hogares como individuos. Además, realizamos una descomposición del índice por grupos – según la situación laboral, el nivel de educación, el tamaño del hogar, la edad y el sexo del jefe de hogar; y calculamos el riesgo relativo de cada grupo. Realizamos también una comparación entre los índices de incidencia (INDEC) y severidad. Concluimos presentando los índices de incidencia y severidad para todo el país, y su descomposición por regiones, para el año 2006.
Resumo:
Resumen: Si bien el período de recuperación posterior a la crisis del fin de la convertibilidad mostró mejoras en las mediciones de pobreza y desigualdad monetarias, el análisis de medidas multidimensionales permite detectar un estancamiento en estas mejoras ya a partir del año 2007. Este documento intenta indagar en los componentes de este cambio, mediante un ejercicio de descomposición temporal y por grupos de la medida Alkire-Foster (2007) aplicada a los datos de la Encuesta de la Deuda Social Argentina.