960 resultados para Indoor and outdoor air


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air-sea interactions are a key process in the forcing of the ocean circulation and the climate. Water Mass Formation is a phenomenon related to extreme air-sea exchanges and heavy heat losses by the water column, being capable to transfer water properties from the surface to great depth and constituting a fundamental component of the thermohaline circulation of the ocean. Wind-driven Coastal Upwelling, on the other hand, is capable to induce intense heat gain in the water column, making this phenomenon important for climate change; further, it can have a noticeable influence on many biological pelagic ecosystems mechanisms. To study some of the fundamental characteristics of Water Mass Formation and Coastal Upwelling phenomena in the Mediterranean Sea, physical reanalysis obtained from the Mediterranean Forecating System model have been used for the period ranging from 1987 to 2012. The first chapter of this dissertation gives the basic description of the Mediterranean Sea circulation, the MFS model implementation, and the air-sea interaction physics. In the second chapter, the problem of Water Mass Formation in the Mediterranean Sea is approached, also performing ad-hoc numerical simulations to study heat balance components. The third chapter considers the study of Mediterranean Coastal Upwelling in some particular areas (Sicily, Gulf of Lion, Aegean Sea) of the Mediterranean Basin, together with the introduction of a new Upwelling Index to characterize and predict upwelling features using only surface estimates of air-sea fluxes. Our conclusions are that latent heat flux is the driving air-sea heat balance component in the Water Mass Formation phenomenon, while sensible heat exchanges are fundamental in Coastal Upwelling process. It is shown that our upwelling index is capable to reproduce the vertical velocity patterns in Coastal Upwelling areas. Nondimensional Marshall numbers evaluations for the open-ocean convection process in the Gulf of Lion show that it is a fully turbulent, three-dimensional phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale: There is increasing evidence that short-term exposure to air pollution has a detrimental effect on respiratory health, but data from healthy populations, particularly infants, are scarce. Objectives: To assess the association of air pollution with frequency and severity of respiratory symptoms and infections measured weekly in healthy infants. Methods: In a prospective birth cohort of 366 infants of unselected mothers, respiratory health was assessed weekly by telephone interviews during the first year of life (19,106 total observations). Daily mean levels of particulate matter (PM10), nitrogen dioxide (NO2), and ozone (O3) were obtained from local monitoring stations. We determined the association of the preceding week's pollutant levels with symptom scores and respiratory tract infections using a generalized additive mixed model with an autoregressive component. In addition, we assessed whether neonatal lung function influences this association and whether duration of infectious episodes differed between weeks with normal PM10 and weeks with elevated levels. Measurements and Main Results: We found a significant association between air pollution and respiratory symptoms, particularly in the week after respiratory tract infections (risk ratio, 1.13 [1.02-1.24] per 10 μg/m(3) PM10 levels) and in infants with premorbid lung function. During times of elevated PM10 (>33.3 μg/m(3)), duration of respiratory tract infections increased by 20% (95% confidence interval, 2-42%). Conclusions: Exposure to even moderate levels of air pollution was associated with increased respiratory symptoms in healthy infants. Particularly in infants with premorbid lung function and inflammation, air pollution contributed to longer duration of infectious episodes with a potentially large socioeconomic impact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing evidence that air pollution particularly affects infants and small preschool children. However, detecting air pollution effects on lung function in small children is technically difficult and requires non-invasive methods that can assess lung function and inflammatory markers in larger cohorts. This review discusses the principles, usefulness and shortcomings of various lung function techniques used to detect pollution effects in small children. The majority of these techniques have been used to detect effects of the dominant indoor pollutant, tobacco exposure. However there is increasing evidence that non-invasive lung function techniques can also detect the effects of outdoor air pollution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time series models relating short-term changes in air pollution levels to daily mortality counts typically assume that the effects of air pollution on the log relative rate of mortality do not vary with time. However, these short-term effects might plausibly vary by season. Changes in the sources of air pollution and meteorology can result in changes in characteristics of the air pollution mixture across seasons. The authors develop Bayesian semi-parametric hierarchical models for estimating time-varying effects of pollution on mortality in multi-site time series studies. The methods are applied to the updated National Morbidity and Mortality Air Pollution Study database for the period 1987--2000, which includes data for 100 U.S. cities. At the national level, a 10 micro-gram/m3 increase in PM(10) at lag 1 is associated with a 0.15 (95% posterior interval: -0.08, 0.39),0.14 (-0.14, 0.42), 0.36 (0.11, 0.61), and 0.14 (-0.06, 0.34) percent increase in mortality for winter, spring, summer, and fall, respectively. An analysis by geographical regions finds a strong seasonal pattern in the northeast (with a peak in summer) and little seasonal variation in the southern regions of the country. These results provide useful information for understanding particle toxicity and guiding future analyses of particle constituent data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analyzing “nuggety” gold samples commonly produces erratic fire assay results, due to random inclusion or exclusion of coarse gold in analytical samples. Preconcentrating gold samples might allow the nuggets to be concentrated and fire assayed separately. In this investigation synthetic gold samples were made using similar density tungsten powder and silica, and were preconcentrated using two approaches: an air jig and an air classifier. Current analytical gold sampling method is time and labor intensive and our aim is to design a set-up for rapid testing. It was observed that the preliminary air classifier design showed more promise than the air jig in terms of control over mineral recovery and preconcentrating bulk ore sub-samples. Hence the air classifier was modified with the goal of producing 10-30 grams samples aiming to capture all of the high density metallic particles, tungsten in this case. Effects of air velocity and feed rate on the recovery of tungsten from synthetic tungsten-silica mixtures were studied. The air classifier achieved optimal high density metal recovery of 97.7% at an air velocity of 0.72 m/s and feed rate of 160 g/min. Effects of density on classification were investigated by using iron as the dense metal instead of tungsten and the recovery was seen to drop from 96.13% to 20.82%. Preliminary investigations suggest that preconcentration of gold samples is feasible using the laboratory designed air classifier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Tuberculosis (TB) is a poverty-related disease that is associated with poor living conditions. We studied TB mortality and living conditions in Bern between 1856 and 1950. METHODS We analysed cause-specific mortality based on mortality registers certified by autopsies, and public health reports 1856 to 1950 from the city council of Bern. RESULTS TB mortality was higher in the Black Quarter (550 per 100,000) and in the city centre (327 per 100,000), compared to the outskirts (209 per 100,000 in 1911-1915). TB mortality correlated positively with the number of persons per room (r = 0.69, p = 0.026), the percentage of rooms without sunlight (r = 0.72, p = 0.020), and negatively with the number of windows per apartment (r = -0.79, p = 0.007). TB mortality decreased 10-fold from 330 per 100,000 in 1856 to 33 per 100,000 in 1950, as housing conditions improved, indoor crowding decreased, and open-air schools, sanatoria, systematic tuberculin skin testing of school children and chest radiography screening were introduced. CONCLUSIONS Improved living conditions and public health measures may have contributed to the massive decline of the TB epidemic in the city of Bern even before effective antibiotic treatment became finally available in the 1950s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Southeast Texas, including Houston, has a large presence of industrial facilities and has been documented to have poorer air quality and significantly higher cancer rates than the remainder of Texas. Given citizens’ concerns in this 4th largest city in the U.S., Mayor Bill White recently partnered with the UT School of Public Health to determine methods to evaluate the health risks of hazardous air pollutants (HAPs). Sexton et al. (2007) published a report that strongly encouraged analytic studies linking these pollutants with health outcomes. In response, we set out to complete the following aims: 1. determine the optimal exposure assessment strategy to assess the association between childhood cancer rates and increased ambient levels of benzene and 1,3-butadiene (in an ecologic setting) and 2. evaluate whether census tracts with the highest levels of benzene or 1,3-butadiene have higher incidence of childhood lymphohematopoietic cancer compared with census tracts with the lowest levels of benzene or 1,3-butadiene, using Poisson regression. The first aim was achieved by evaluating the usefulness of four data sources: geographic information systems (GIS) to identify proximity to point sources of industrial air pollution, industrial emission data from the U.S. EPA’s Toxic Release Inventory (TRI), routine monitoring data from the U.S. EPA Air Quality System (AQS) from 1999-2000 and modeled ambient air levels from the U.S. EPA’s 1999 National Air Toxic Assessment Project (NATA) ASPEN model. Further, once these four data sources were evaluated, we narrowed them down to two: the routine monitoring data from the AQS for the years 1998-2000 and the 1999 U.S. EPA NATA ASPEN modeled data. We applied kriging (spatial interpolation) methodology to the monitoring data and compared the kriged values to the ASPEN modeled data. Our results indicated poor agreement between the two methods. Relative to the U.S. EPA ASPEN modeled estimates, relying on kriging to classify census tracts into exposure groups would have caused a great deal of misclassification. To address the second aim, we additionally obtained childhood lymphohematopoietic cancer data for 1995-2004 from the Texas Cancer Registry. The U.S. EPA ASPEN modeled data were used to estimate ambient levels of benzene and 1,3-butadiene in separate Poisson regression analyses. All data were analyzed at the census tract level. We found that census tracts with the highest benzene levels had elevated rates of all leukemia (rate ratio (RR) = 1.37; 95% confidence interval (CI), 1.05-1.78). Among census tracts with the highest 1,3-butadiene levels, we observed RRs of 1.40 (95% CI, 1.07-1.81) for all leukemia. We detected no associations between benzene or 1,3-butadiene levels and childhood lymphoma incidence. This study is the first to examine this association in Harris and surrounding counties in Texas and is among the first to correlate monitored levels of HAPs with childhood lymphohematopoietic cancer incidence, evaluating several analytic methods in an effort to determine the most appropriate approach to test this association. Despite recognized weakness of ecologic analyses, our analysis suggests an association between childhood leukemia and hazardous air pollution.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan-Sahelian country (Bamako, Mali) between September 2012 - July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 - 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory reaction, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara-Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Location-based services (LBS) highly rely on the location of the mobile user in order to provide the service tailored to that location. This location is calculated differently depending on the technology available in the used mobile device. No matter which technology is used, the location will never be calculated 100% correctly; instead there will always be a margin of error generated during the calculation, which is referred to as positional accuracy. This research has reviewed the eight most common positioning technologies available in the major current smart-phones and assessed their positional accuracy with respect to its usage by LBS applications. Given the vast majority of these applications, this research classified them into thirteen categories, and these categories were also classified depending on their level criticality as low, medium, or high critical, and whether they function indoor or outdoor. The accuracies of different positioning technologies are compared to these two criteria. Low critical outdoor and high critical indoor applications were found technologically covered; high and medium critical outdoor ones weren?t fully resolved. Finally three potential solutions are suggested to be implemented in future smartphones to resolve this technological gap: Real-Time Kinematics Global Positioning System (RTK GPS), terrestrial transmitters, and combination of Wireless Sensors Network and Radio Frequency Identification (WSN-RFID).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that a green wall brings some advantages to a building. It constitutes a barrier against solar radiation, thus decreasing and delaying the incoming heat flux. The aim of this study is to quantify such advantages through analytical comparison between two facades, a vegetal facade and a conventional facade. Both were highly insulated (U-value = 0.3 W/m2K) and installed facing south on the same building in the central territory of Spain. In order to compare their thermal trend, a series of sensors were used to register superficial and indoor air temperature. The work was carried out between 17th August 2012 and 1st October 2012, with a temperature range of 12°C-36°C and a maximum horizontal radiation of 1020 W/m2. Results show that the indoor temperature of the green wall module was lower than the other. Besides, comparing superficial outdoor and indoor temperatures of the two walls to outdoor air temperatures, it was noticed that, due to the shading plants, the green wall superficial temperature was 5 °C lower on the facade, while the bare wall temperature was 15 °C higher. The living wall module temperature was 1.6 °C lower than the outdoor, while the values of the conventional one were similar to the outdoor air temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographical references.