827 resultados para Implicit difference approximation
Resumo:
We provide robust examples of symmetric two-player coordination games in normal form that reveal that equilibrium selection bythe evolutionary model of Young (1993) is essentially different from equilibrium selection by the evolutionary model of Kandori, Mailath and Rob (1993).
Resumo:
A new strategy for incremental building of multilayer feedforward neural networks is proposed in the context of approximation of functions from R-p to R-q using noisy data. A stopping criterion based on the properties of the noise is also proposed. Experimental results for both artificial and real data are performed and two alternatives of the proposed construction strategy are compared.
Resumo:
The aim of this master's thesis was to assess the ten- year trends and regional differences in management and outcome of acute myocardial infarction (AMI) within Switzerland. The thesis is composed of two articles. First, in the article "Trends in hospital management of acute myocardial infarction in Switzerland, 1998 to 2008" over 102,700 cases of AMI with corresponding management and revascularization procedures were assessed. The results showed a considerable increase in the numbers of hospital discharges for AMI, namely due to the increase of between- hospital transfers. Rates of intensive care unit admissions remained stable. All types of revascularization procedures showed an increase. In particular, overall stenting rates increased with drug-eluting stents partly replacing bare stents. Second, in the article "The region makes the difference: disparities in management of acute myocardial infarction within Switzerland" around 25,600 cases of AMI with corresponding management were assessed for the period of 2007-2008 and according to seven Swiss regions. As reported by our results, considerable regional differences in AMI management were stated within Switzerland. Although each region showed different trends regarding revascularization interventions, Leman and Ticino contrast significantly by presenting the minimum and maximum rates in almost all assessed parameters. As a consequence these two regions differ the most from the Swiss average. The impact of the changes in trends and the regional differences in AMI management on Swiss patient's outcome and economics remains to be assessed. Purpose: To assess ten-year trends in management and outcome of acute myocardial infarction (AMI) in Switzerland. Methods: Swiss hospital discharge database for the 1998 to 2008 period. AMI was defined as a primary discharge diagnosis code I21 according to the CIM-10 classification of the World Health Organization. Management and revascularization procedures were assessed. Results: Overall, 102,729 hospital discharges with a diagnosis of AMI were analyzed. The number of hospital discharges increased almost three-fold from 5530 in 1998 to 13,834 in 2008, namely due to a considerable increase in between-hospital transfers (1352 in 1998, 6494 in 2008). Relative to all hospital discharges, Intensive Care Unit admission rate was 38.0% in 1998 and remained stable (36.2%) in 2008 (p for trend=0.25). Percutaneous revascularization rates increased from 6.0% to 39.9% (p for trend<0.001). Non-drug-eluting stent use increased from 1.3% to 16.6% (p for trend<0.05). Drug eluting stents appeared in 2004 and increased to 23.5% of hospital discharges in 2008 (p for trend=0.07). Coronary artery bypass graft increased from 1.0% to 3.0% (p for trend<0.001). Circulatory assistance increased from 0.2% to 1.7% (p for trend<0.001). Thrombolysis showed no significant changes, from 0.5% to 1.9% (p for trend=0.64). Most of these trends were confirmed after multivariate adjustment. Conclusion: Between 1998 and 2008 the number of hospital discharges for AMI increased considerably in Switzerland, namely due to between-hospital transfers. Overall stenting rates increased, drug-eluting stents partly replacing bare stents. The impact of these changes on outcome and economics remains to be assessed.
Resumo:
MAP5, a microtubule-associated protein characteristic of differentiating neurons, was studied in the developing visual cortex and corpus callosum of the cat. In juvenile cortical tissue, during the first month after birth, MAP5 is present as a protein doublet of molecular weights of 320 and 300 kDa, defined as MAP5a and MAP5b, respectively. MAP5a is the phosphorylated form. MAP5a decreases two weeks after birth and is no longer detectable at the beginning of the second postnatal month; MAP5b also decreases after the second postnatal week but more slowly and it is still present in the adult. In the corpus callosum only MAP5a is present between birth and the end of the first postnatal month. Afterwards only MAP5b is present but decreases in concentration more than 3-fold towards adulthood. Our immunocytochemical studies show MAP5 in somata, dendrites and axonal processes of cortical neurons. In adult tissue it is very prominent in pyramidal cells of layer V. In the corpus callosum MAP5 is present in axons at all ages. There is strong evidence that MAP5a is located in axons while MAP5b seems restricted to somata and dendrites until P28, but is found in callosal axons from P39 onwards. Biochemical experiments indicate that the state of phosphorylation of MAP5 influences its association with structural components. After high speed centrifugation of early postnatal brain tissue, MAP5a remains with pellet fractions while most MAP5b is soluble. In conclusion, phosphorylation of MAP5 may regulate (1) its intracellular distribution within axons and dendrites, and (2) its ability to interact with other subcellular components.
Resumo:
Although functional neuroimaging studies have supported the distinction between explicit and implicit forms of memory, few have matched explicit and implicit tests closely, and most of these tested perceptual rather than conceptual implicit memory. We compared event-related fMRI responses during an intentional test, in which a group of participants used a cue word to recall its associate from a prior study phase, with those in an incidental test, in which a different group of participants used the same cue to produce the first associate that came to mind. Both semantic relative to phonemic processing at study, and emotional relative to neutral word pairs, increased target completions in the intentional test, but not in the incidental test, suggesting that behavioral performance in the incidental test was not contaminated by voluntary explicit retrieval. We isolated the neural correlates of successful retrieval by contrasting fMRI responses to studied versus unstudied cues for which the equivalent "target" associate was produced. By comparing the difference in this repetition-related contrast across the intentional and incidental tests, we could identify the correlates of voluntary explicit retrieval. This contrast revealed increased bilateral hippocampal responses in the intentional test, but decreased hippocampal responses in the incidental test. A similar pattern in the bilateral amygdale was further modulated by the emotionality of the word pairs, although surprisingly only in the incidental test. Parietal regions, however, showed increased repetition-related responses in both tests. These results suggest that the neural correlates of successful voluntary explicit memory differ in directionality, even if not in location, from the neural correlates of successful involuntary implicit (or explicit) memory, even when the incidental test taps conceptual processes.
Resumo:
We have modeled numerically the seismic response of a poroelastic inclusion with properties applicable to an oil reservoir that interacts with an ambient wavefield. The model includes wave-induced fluid flow caused by pressure differences between mesoscopic-scale (i.e., in the order of centimeters to meters) heterogeneities. We used a viscoelastic approximation on the macroscopic scale to implement the attenuation and dispersion resulting from this mesoscopic-scale theory in numerical simulations of wave propagation on the kilometer scale. This upscaling method includes finite-element modeling of wave-induced fluid flow to determine effective seismic properties of the poroelastic media, such as attenuation of P- and S-waves. The fitted, equivalent, viscoelastic behavior is implemented in finite-difference wave propagation simulations. With this two-stage process, we model numerically the quasi-poroelastic wave-propagation on the kilometer scale and study the impact of fluid properties and fluid saturation on the modeled seismic amplitudes. In particular, we addressed the question of whether poroelastic effects within an oil reservoir may be a plausible explanation for low-frequency ambient wavefield modifications observed at oil fields in recent years. Our results indicate that ambient wavefield modification is expected to occur for oil reservoirs exhibiting high attenuation. Whether or not such modifications can be detected in surface recordings, however, will depend on acquisition design and noise mitigation processing as well as site-specific conditions, such as the geologic complexity of the subsurface, the nature of the ambient wavefield, and the amount of surface noise.
Resumo:
An epidemic model is formulated by a reactionâeuro"diffusion system where the spatial pattern formation is driven by cross-diffusion. The reaction terms describe the local dynamics of susceptible and infected species, whereas the diffusion terms account for the spatial distribution dynamics. For both self-diffusion and cross-diffusion, nonlinear constitutive assumptions are suggested. To simulate the pattern formation two finite volume formulations are proposed, which employ a conservative and a non-conservative discretization, respectively. An efficient simulation is obtained by a fully adaptive multiresolution strategy. Numerical examples illustrate the impact of the cross-diffusion on the pattern formation.
Resumo:
Social scientists often estimate models from correlational data, where the independent variable has not been exogenously manipulated; they also make implicit or explicit causal claims based on these models. When can these claims be made? We answer this question by first discussing design and estimation conditions under which model estimates can be interpreted, using the randomized experiment as the gold standard. We show how endogeneity--which includes omitted variables, omitted selection, simultaneity, common methods bias, and measurement error--renders estimates causally uninterpretable. Second, we present methods that allow researchers to test causal claims in situations where randomization is not possible or when causal interpretation is confounded, including fixed-effects panel, sample selection, instrumental variable, regression discontinuity, and difference-in-differences models. Third, we take stock of the methodological rigor with which causal claims are being made in a social sciences discipline by reviewing a representative sample of 110 articles on leadership published in the previous 10 years in top-tier journals. Our key finding is that researchers fail to address at least 66 % and up to 90 % of design and estimation conditions that make causal claims invalid. We conclude by offering 10 suggestions on how to improve non-experimental research.
Resumo:
Using the once and thrice energy-weighted moments of the random-phase-approximation strength function, we have derived compact expressions for the average energy of surface collective oscillations of clusters and spheres of metal atoms. The L=0 volume mode has also been studied. We have carried out quantal and semiclassical calculations for Na and Ag systems in the spherical-jellium approximation. We present a rather thorough discussion of surface diffuseness and quantal size effects on the resonance energies.
Resumo:
The longitudinal dipole response of a quantum dot has been calculated in the far-infrared regime using local-spin-density-functional theory. We have studied the coupling between the collective spin and density modes as a function of the magnetic field. We have found that the spin dipole mode and single-particle excitations have a sizable overlap, and that the magnetoplasmon modes can be excited by the dipole spin operator if the dot is spin polarized. The frequency of the dipole spin edge mode presents an oscillation which is clearly filling factor (v) related. We have found that the spin dipole mode is especially soft for even-n values. Results for selected numbers of electrons and confining potentials are discussed.