965 resultados para Ifn-gamma
Resumo:
Human monocytes lacked fungicidal activity against high virulence strain of Paracoccidioides brasiliensis, even after IFN-gamma activation. However, monocytes treated with indomethacin exhibited an effective killing against this fungus, suggesting a role of prostaglandin E-2 (PGE(2)) in the inhibition process. Thus, the purpose of this work was to determine whether the effect of PGE2 in fungicidal activity was related with decrease on H2O2 release, the metabolite involved in P. brasiliensis killing, and changes in the levels of TNF-alpha, IL-6 and IL-10. Human monocytes challenged with the fungus produced high PGE(2) levels, which in turn inhibited the fungicidal activity of these cells by reducing H2O2 and TNF-alpha production. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
The polysaccharide fraction of Paracoccidioides brasiliensis mycelial cell wall (F1 fraction), the active component of which is composed of beta-glucan, was investigated in regard to the activation of human monocytes for fungal killing. The cells were primed with interferon-gamma (IFN-gamma) or F1 (100 and 200 mug ml(-1)) or F1 (100 and 200 mug ml(-1)) plus IFN-gamma for 24 h and then evaluated for H2O2 release. In other experiments, the cells were pretreated with the same stimuli, challenged with a virulent strain of P. brasiliensis and evaluated for fungicidal activity and levels of tumor necrosis factor (TNF-alpha) in the supernatants. F1 increased the levels of H2O2 in a similar manner to IFN-gamma. However, a synergistic effect between these two activators was not detected. on the contrary, a significant fungicidal activity was only obtained after priming with IFN-gamma plus F1. This higher activity was associated with high levels of TNF-alpha in the supernatants of the cocultures. Overall, P. brasiliensis F1 fraction induced human monocytes to release relatively high levels of TNF-alpha, which, in combination with IFN-gamma, is responsible for the activation of human monocytes for effective killing of P. brasiliensis.
Resumo:
Peripheral blood monocytes obtained from paracoccidioidomycosis patients and healthy individuals were preactivated with recombinant gamma interferon (IFN-gamma) in different concentrations (250, 500 and 1000 U/ml) and evaluated for fungicidal activity against Paracoccidiodes brasiliensis strain 18 (Pb 18, high-virulence strain) and strain 265 (Pb 265, low-virulence strain) by plating of cocultures and counting of colony-forming units, after 10 d. Monocytes from healthy individuals failed to present fungicidal activity against P. brasiliensis even after IFN-gamma activation at the three concentrations. However, patient, monocytes activated with IFN-gamma (1 000 U/ml) showed a significant fungicidal activity when compared to that obtained with non-activated or activated cells with other IFN-gamma concentrations (250 and 500 U/ml). Moreover,,patient monocytes presented higher fungicidal activity than the control, even before the activation process. These results may be explained by the activation state of patients' cells as a function of the in vivo contact with the fungus, which was confirmed by their higher capacity to release H2O2 in vitro. Unlike the results obtained with Ph 18, patient and control cells presented a significant fungicidal activity against Pb 265, after priming with IFN-gamma. These results are explained by the higher levels of TNF-alpha in supernatants of cultures challenged with Pb 265. Moreover, higher levels of the cytokine were obtained in patient cell supernatants. Taken together, our results suggest that for effective killing of P. brasiliensis by monocytes, an initial activation signal induced by IFN-gamma is necessary to stimulate the cells to produce TNF-alpha. This cytokine may be involved, through an autocrine pathway, in the final phase activation process. The effectiveness of this process seems to depend on the virulence of the fungal strain and the activation state of the challenged cells. (C) 2003 Editions scientifiques et medicales Elsevier SAS. All fights reserved.
Resumo:
In the present work, we have studied the effects of two titanocenes, biscyclopentadienyldichlorotitanium IV (DDCT) and its derivative, biscyclopentadienylditiocianatetitanium IV (BCDT), on the production of cytokines [interferon-gamma (IFN-gamma), interelukin-1, interleukin (IL) 2, IL-4, and IL-10] by concanavalin A (Con A)-stimulated T cells obtained from Ehrlich ascites tumour (EAT)-bearing BALB/c mice. The treatment consisted of intraperitoneal (i.p) administration of 15 mg/kg/day DDCT for 2 days or 10 mg/kg/day BCDT for 3 days. We observed that the levels of IFN-gamma, but not IL-2, were dramatically increased in the early phase of EAT development. With tumour evolution, however, a sharp and progressive decrease in the levels of both IFN-gamma and IL-2 was found concomitantly to an enhancement in the levels of IL-10. Treatment of these mice with both titanocene compounds demonstrated that DDCT is more effective in modulating the cytokine imbalance induced by the tumour since it could prevent the early enhancement of IFN-gamma, the late decline of IFN-gamma and IL-2, and the increase in the IL-10. The administration of BCDT, in spite of preventing early IFN-gamma enhancement and increase in IL-10, did not produce any change in the IL-2 levels and did not prevent the decline of IFN-gamma levels during tumour evolution. Collectively, these results reveal that the ability of titanocenes to reverse tumour-induced immunosuppression and delay tumour growth is more evident in the DDCT compound, thus indicating that the substitution of the halides halogens by pseudohalogens, present in the molecular structure of BCDT, leads to a less effective antitumoral compound. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The high incidence of tuberculosis around the world and the inability of BCG to protect certain populations clearly indicate that an improved vaccine against tuberculosis is needed. A single antigen, the mycobacterial heat shock protein hsp65, is sufficient to protect BALB/c mice against challenge infection when administered as DNA vaccine in a three-dose-based schedule. In order to simplify the vaccination schedule, we coencapsulated hsp65-DNA and trehalose dimicolate (TDM) into biodegradable poly(DL-lactide-co-glycolide) (PLGA) microspheres. BALB/c mice immunized with a single dose of DNA-hsp65/TDM-1oaded microspheres produced high levels of IgG2a subtype antibody and high amounts of IFN-gamma in the supernatant of spleen cell cultures. DNA-hsp65/TDM-loaded microspheres were also able to induce high IFN-gamma production in bulk lung cells from challenged mice and confer protection as effective as that attained after three doses of naked DNA administration. This new formulation also allowed a ten-fold reduction in the DNA dose when compared to naked DNA. Thus, this combination of DNA vaccine and adjuvants with immunomodulatory and carrier properties holds the potential for an improved vaccine against tuberculosis.
Resumo:
Multinucleated giant cells (MGC) are characteristic cells in granulomatous disorders such as paracoccidioidomycosis (PCM) and also are formed in vitro from peripheral blood mononuclear cells by several stimuli. In this study, the authors investigated in vitro formation of MGC derived from monocytes of healthy individuals, stimulated with Paracoccidioides brasiliensis antigen (PbAg), compared with other stimuli such as IFN-gamma and supernatant of Con-A-stimulated peripheral blood mononuclear cells (CM-ConA). Besides, the fungicidal activity of monocytes and monocyte-derived MGC challenged with P. brasiliensis were compared, at a ratio of one fungus per 50 monocytes. Results demonstrated that PbAg, IFN-gamma, and CM-ConA stimuli were able to induce MGC generation, with fusion indices significantly higher than control cultures. Striking results were observed when MGC induced by PbAg and IFN-gamma presented higher fungicidal activity than monocytes, submitted to the same stimuli, showing a better capacity of these cells to kill P. brasiliensis. In summary, the results suggest that PbAg is able to induce MGC generation, and these cells presented higher fungicidal activity against P. brasiliensis than monocytes.
Resumo:
Leprosy is a chronic infectious disease caused by Mycobacterium leprae, a low virulence mycobacterium, and the outcome of disease is dependent on the host genetics for either susceptibility per se or severity. The IFNG gene codes for interferon-gamma (IFN-gamma), a cytokine that plays a key role in host defense against intracellular pathogens. Indeed, single nucleotide polymorphisms (SNPs) in IFNG have been evaluated in several genetic epidemiological studies, and the SNP +874T > A, the +874T allele, more specifically, has been associated with protection against infectious diseases, especially tuberculosis. Here, we evaluated the association of the IFNG locus with leprosy enrolling 2,125 Brazilian subjects. First, we conducted a case-control study with subjects recruited from the state of So Paulo, using the +874 T > A (rs2430561), +2109 A > G (rs1861494) and rs2069727 SNPs. Then, a second study including 1,370 individuals from Rio de Janeiro was conducted. Results of the case-control studies have shown a protective effect for +874T carriers (OR(adjusted) = 0.75; p = 0.005 for both studies combined), which was corroborated when these studies were compared with literature data. No association was found between the SNP +874T > A and the quantitative Mitsuda response. Nevertheless, the spontaneous IFN-gamma release by peripheral blood mononuclear cells was higher among +874T carriers. The results shown here along with a previously reported meta-analysis of tuberculosis studies indicate that the SNP +874T > A plays a role in resistance to mycobacterial diseases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The efficacy of BCG vaccine (attenuated Mycobacterium bovis) against pulmonary tuberculosis varies enormously among different populations. The prevailing hypothesis attributes this variation to interactions between the vaccine and mycobacteria common in the environment. Studies have revealed that most protective antigens expressed by the antituberculous vaccine are conserved in M. avium, supporting the hypothesis that exposure to environmental mycobacteria generates a cross-reactive immune response that interferes with BCG efficacy. In this study we investigated the effect of a prior exposure to heat-killed M. avium on the immune response and the protective efficacy induced by a genetic vaccine pVAXhsp65 (hsp65 gene from M. leprae inserted in pVAX vector) against experimental tuberculosis. To evaluate the effect on the immune response, female BALB/c mice were initially injected with distinct doses (0.08×106, 4×106, and 200×10 6) of heat-killed M. avium by subcutaneous route. Three weeks later, the animals were immunized with 3 doses of DNAhsp65 by intramuscular route (100μg/15 days apart). Control groups received only M. avium, vaccine (pVAXhsp65), vector (pVAX) or saline solution. Cytokine production and antibody levels were determined by ELISA. To evaluate the effect on the protective efficacy, animals were initially sensitized with 200×106 heat-killed CFU of M. avium by subcutaneous route and then immunized with 3 doses of pVAXhsp65 (100μg/15 days apart) by intramuscular route. Control groups were injected with saline, pVAX (4 doses), pVAXhsp65 (4 doses), M. avium or M. avium plus pVAX (3 doses). Fifteen days after last DNA dose, the animals were infected with 1×104 viable CFU of H37Rv M. tuberculosis by intratracheal route. Thirty days after challenge, the animals were sacrificed and the bacterial burden was determined by counting the number of CFU in the lungs. Lung histological sections were also analyzed. Splenic cells from primed animals produced more IL-5 but less IFN-gamma than non-primed ones. Also, prior contact with M. avium determined higher production of IgG1 and IgG2a anti-hsp65 antibodies in comparison to control groups. However, this higher immune response did not decrease the bacterial burden in the lungs. In addition, prior sensitization with M. avium decreased the parenchyma preservation observed in the group immunized only with pVaxhsp65. These results indicate that environmental mycobacteria can interfere with immunity and protective efficacy induced by DNAhsp65.
Resumo:
Background: Protein-calorie malnutrition (PCM) is the most common type of malnutrition. PCM leads to immunodeficiency and consequent increased susceptibility to infectious agents. In addition, responses to prophylactic vaccines depend on nutritional status. This study aims to evaluate the ability of undernourished mice to mount an immune response to a genetic vaccine (pVAXhsp65) against tuberculosis, containing the gene coding for the heat shock protein 65 from mycobacteria. Methods: Young adult female BALB/c mice were fed ad libitum or with 80% of the amount of food consumed by a normal diet group. We initially characterized a mice model of dietary restriction by determining body and spleen weights, hematological parameters and histopathological changes in lymphoid organs. The ability of splenic cells to produce IFN-gamma and IL-4 upon in vitro stimulation with LPS or S. aureus and the serum titer of specific IgG1 and IgG2a anti-hsp65 antibodies after intramuscular immunization with pVAXhsp65 was then tested. Results: Dietary restriction significantly decreased body and spleen weights and also the total lymphocyte count in blood. This restriction also determined a striking atrophy in lymphoid organs as spleen, thymus and lymphoid tissue associated with the small intestine. Specific antibodies were not detected in mice submitted to dietary restriction whereas the well nourished animals produced significant levels of both, IgG1 and IgG2a anti-hsp65. Conclusion: 20% restriction in food intake deeply compromised humoral immunity induced by a genetic vaccine, alerting, therefore, for the relevance of the nutritional condition in vaccination programs based on these kinds of constructs. © 2009 Ishikawa et al; licensee BioMed Central Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Doenças Tropicais - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)