842 resultados para Hybrid genetic algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – This paper sets out to study a production-planning problem for printed circuit board (PCB) assembly. A PCB assembly company may have a number of assembly lines for production of several product types in large volume. Design/methodology/approach – Pure integer linear programming models are formulated for assigning the product types to assembly lines, which is the line assignment problem, with the objective of minimizing the total production cost. In this approach, unrealistic assignment, which was suffered by previous researchers, is avoided by incorporating several constraints into the model. In this paper, a genetic algorithm is developed to solve the line assignment problem. Findings – The procedure of the genetic algorithm to the problem and a numerical example for illustrating the models are provided. It is also proved that the algorithm is effective and efficient in dealing with the problem. Originality/value – This paper studies the line assignment problem arising in a PCB manufacturing company in which the production volume is high.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A chip shooter machine in printed circuit board (PCB) assembly has three movable mechanisms: an X-Y table carrying a PCB, a feeder carrier with several feeders holding components and a rotary turret with multiple assembly heads to pick up and place components. In order to get the minimal placement or assembly time for a PCB on the machine, all the components on the board should be placed in a perfect sequence, and the components should be set up on a right feeder, or feeders since two feeders can hold the same type of components, and additionally, the assembly head should retrieve or pick up a component from a right feeder. The entire problem is very complicated, and this paper presents a genetic algorithm approach to tackle it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generalised transportation problem (GTP) is an extension of the linear Hitchcock transportation problem. However, it does not have the unimodularity property, which means the linear programming solution (like the simplex method) cannot guarantee to be integer. This is a major difference between the GTP and the Hitchcock transportation problem. Although some special algorithms, such as the generalised stepping-stone method, have been developed, but they are based on the linear programming model and the integer solution requirement of the GTP is relaxed. This paper proposes a genetic algorithm (GA) to solve the GTP and a numerical example is presented to show the algorithm and its efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a simulated genetic algorithm (GA) model of scheduling the flow shop problem with re-entrant jobs. The objective of this research is to minimize the weighted tardiness and makespan. The proposed model considers that the jobs with non-identical due dates are processed on the machines in the same order. Furthermore, the re-entrant jobs are stochastic as only some jobs are required to reenter to the flow shop. The tardiness weight is adjusted once the jobs reenter to the shop. The performance of the proposed GA model is verified by a number of numerical experiments where the data come from the case company. The results show the proposed method has a higher order satisfaction rate than the current industrial practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an adaptive method using genetic algorithm to modify user’s queries, based on relevance judgments. This algorithm was adapted for the three well-known documents collections (CISI, NLP and CACM). The method is shown to be applicable to large text collections, where more relevant documents are presented to users in the genetic modification. The algorithm shows the effects of applying GA to improve the effectiveness of queries in IR systems. Further studies are planned to adjust the system parameters to improve its effectiveness. The goal is to retrieve most relevant documents with less number of non-relevant documents with respect to user's query in information retrieval system using genetic algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we discuss a possibility to use genetic algorithms in cryptanalysis. We developed and described the genetic algorithm for finding the secret key of a block permutation cipher. In this case key is a permutation of some first natural numbers. Our algorithm finds the exact key’s length and the key with controlled accuracy. Evaluation of conducted experiment’s results shows that the almost automatic cryptanalysis is possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research was partially supported by the Serbian Ministry of Science and Ecology under project 144007. The authors are grateful to Ivana Ljubić for help in testing and to Vladimir Filipović for useful suggestions and comments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The re-entrant flow shop scheduling problem (RFSP) is regarded as a NP-hard problem and attracted the attention of both researchers and industry. Current approach attempts to minimize the makespan of RFSP without considering the interdependency between the resource constraints and the re-entrant probability. This paper proposed Multi-level genetic algorithm (GA) by including the co-related re-entrant possibility and production mode in multi-level chromosome encoding. Repair operator is incorporated in the Multi-level genetic algorithm so as to revise the infeasible solution by resolving the resource conflict. With the objective of minimizing the makespan, Multi-level genetic algorithm (GA) is proposed and ANOVA is used to fine tune the parameter setting of GA. The experiment shows that the proposed approach is more effective to find the near-optimal schedule than the simulated annealing algorithm for both small-size problem and large-size problem. © 2013 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new method for offline handwriting recognition is presented. A robust algorithm for handwriting segmentation has been described here with the help of which individual characters can be segmented from a word selected from a paragraph of handwritten text image which is given as input to the module. Then each of the segmented characters are converted into column vectors of 625 values that are later fed into the advanced neural network setup that has been designed in the form of text files. The networks has been designed with quadruple layered neural network with 625 input and 26 output neurons each corresponding to a character from a-z, the outputs of all the four networks is fed into the genetic algorithm which has been developed using the concepts of correlation, with the help of this the overall network is optimized with the help of genetic algorithm thus providing us with recognized outputs with great efficiency of 71%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is distributed genetic algorithm implementation (so called island algorithm) to accelerate the optimum searching process in space of solutions. Distributed genetic algorithm has also smaller chances to fall in local optimum. This conception depends on mutual cooperation of the clients which realize separate working of genetic algorithms on local machines. As a tool for implementation of distributed genetic algorithm, created to produce net's applications Java technology was chosen. In Java technology, there is a technique of remote methods invocation - Java RMI. By means of invoking remote methods it can send objects between clients and server RMI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of finding the optimal join ordering executing a query to a relational database management system is a combinatorial optimization problem, which makes deterministic exhaustive solution search unacceptable for queries with a great number of joined relations. In this work an adaptive genetic algorithm with dynamic population size is proposed for optimizing large join queries. The performance of the algorithm is compared with that of several classical non-deterministic optimization algorithms. Experiments have been performed optimizing several random queries against a randomly generated data dictionary. The proposed adaptive genetic algorithm with probabilistic selection operator outperforms in a number of test runs the canonical genetic algorithm with Elitist selection as well as two common random search strategies and proves to be a viable alternative to existing non-deterministic optimization approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antenna design is an iterative process in which structures are analyzed and changed to comply with certain performance parameters required. The classic approach starts with analyzing a "known" structure, obtaining the value of its performance parameter and changing this structure until the "target" value is achieved. This process relies on having an initial structure, which follows some known or "intuitive" patterns already familiar to the designer. The purpose of this research was to develop a method of designing UWB antennas. What is new in this proposal is that the design process is reversed: the designer will start with the target performance parameter and obtain a structure as the result of the design process. This method provided a new way to replicate and optimize existing performance parameters. The base of the method was the use of a Genetic Algorithm (GA) adapted to the format of the chromosome that will be evaluated by the Electromagnetic (EM) solver. For the electromagnetic study we used XFDTD™ program, based in the Finite-Difference Time-Domain technique. The programming portion of the method was created under the MatLab environment, which serves as the interface for converting chromosomes, file formats and transferring of data between the XFDTD™ and GA. A high level of customization had to be written into the code to work with the specific files generated by the XFDTD™ program. Two types of cost functions were evaluated; the first one seeking broadband performance within the UWB band, and the second one searching for curve replication of a reference geometry. The performance of the method was evaluated considering the speed provided by the computer resources used. Balance between accuracy, data file size and speed of execution was achieved by defining parameters in the GA code as well as changing the internal parameters of the XFDTD™ projects. The results showed that the GA produced geometries that were analyzed by the XFDTD™ program and changed following the search criteria until reaching the target value of the cost function. Results also showed how the parameters can change the search criteria and influence the running of the code to provide a variety of geometries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effectiveness of an optimization algorithm can be reduced to its ability to navigate an objective function’s topology. Hybrid optimization algorithms combine various optimization algorithms using a single meta-heuristic so that the hybrid algorithm is more robust, computationally efficient, and/or accurate than the individual algorithms it is made of. This thesis proposes a novel meta-heuristic that uses search vectors to select the constituent algorithm that is appropriate for a given objective function. The hybrid is shown to perform competitively against several existing hybrid and non-hybrid optimization algorithms over a set of three hundred test cases. This thesis also proposes a general framework for evaluating the effectiveness of hybrid optimization algorithms. Finally, this thesis presents an improved Method of Characteristics Code with novel boundary conditions, which better characterizes pipelines than previous codes. This code is coupled with the hybrid optimization algorithm in order to optimize the operation of real-world piston pumps.