834 resultados para Homeostasis Model Assessment
Resumo:
A study was taken in a 1566 ha watershed situated in the Capivara River basin, municipality of Botucatu, São Paulo State, Brazil. This environment is fragile and can be subjected to different forms of negative impacts, among them soil erosion by water. The main objective of the research was to develop a methodology for the assessment of soil erosion fragility at the various different watershed positions, using the geographic information system ILWIS version 3.3 for Windows. An impact model was created to generate the soil's erosion fragility plan, based on four indicators of fragility to water erosion: land use and cover, slope, percentage of soil fine sand and accumulated water flow. Thematic plans were generated in a geographic information system (GIS) environment. First, all the variables, except land use and cover, were described by continuous numerical plans in a raster structure. The land use and cover plan was also represented by numerical values associated with the weights attributed to each class, starting from a pairwise comparison matrix and using the analytical hierarchy process. A final field check was done to record evidence of erosive processes in the areas indicated as presenting the highest levels of fragility, i.e., sites with steep slopes, high percentage of soil fine sand, tendency to accumulate surface water flow, and sites of pastureland. The methodology used in the environmental problems diagnosis of the study area can be employed at places with similar relief, soil and climatic conditions.
Resumo:
Objectives: the administration of cyclosporin A has been associated with significant bone loss and increased bone remodeling. The present investigation was designed to evaluate the effects of cyclosporin A on alveolar bone of rats subjected to experimental periodontitis, using serum, stereometric and radiographic analysis.Methods: Twenty-four rats were divided into one of the following groups with six animals each: group I, control rats; group II, in which the animals received a cotton ligature around the lower first molars; group III, in which the rats received a cotton ligature around the lower first molars and were treated with 10 mg/(kg body weight day) of cyclosporin A; group IV, in which the rats were treated with 10 mg/(kg body weight day) of cyclosporin A. At the end of experimental period, at 30 days, animals were killed and the serum calcium and alkaline phosphatase levels were measured in all groups. The distance from the alveolar bone crest to the cemento-enamel junction was measured radiographically for each mesial surface of the lower first molars of each rat. After histological processing, the stereological parameters: volume densities of multinucleated osteoclasts (V-o), alveolar bone (V-b), marrow (V-m), and relation of eroded surface/bone surface (Es/Bs) were assessed at the mesial region of the alveolar bone.Results: Significant decreases in serum calcium were observed in those groups that received cyclosporin A therapy. No significant changes in serum alkaline phosphatase were observed. The therapy with cyclosporin A combined with the ligature placement decreased the V-b and increased the V-o, V-m and Es/Bs at the mesial surface of lower first molars. on the other hand, the radiographic data showed that cyclosporin A therapy diminished the alveolar bone loss at the mesial surface of the lower first molars.Conclusions: Therefore, within the limits of this study, we suggest that cyclosporin A at immunosuppressive levels can bring about an imbalance in the alveolar bone homeostasis in rats. However, in the presence of inflammatory stimulation, the inhibition of the immune system by cyclosporin A may decrease the initial periodontal breakdown.
Resumo:
The general objective of this work was to develop a monitoring and management model for aquatic plants that could be used in reservoir cascades in Brazil, using the reservoirs of AES-Tiete as a study case. The investigations were carried out at the reservoirs of Barra-Bonita, Bariri, Ibitinga, Promissao, and Nova-Avanhandava, located in the Tiete River Basin; Agua Vermelha, located in the Grande River Basin; Caconde, Limoeiro, and Euclides da Cunha, which are part of the Pardo River Basin; and the Mogi-Guacu reservoir, which belongs to the Mogi-Guacu River basin. The main products of this work were: development of techniques using satellite-generated images for monitoring and planning aquatic plant control; planning and construction of a boat to move floating plant masses and an airboat equipped with a DGPS navigation and application flow control system. Results allowed to conclude that the occurrence of all types of aquatic plants is directly associated with sedimentation process and, consequently, with nutrient and light availability. Reservoirs placed at the beginning of cascades are more subject to sedimentation and occurrence of marginal, floating and emerged plants, and are the priority when it comes to controlling these plants, since they provide a supply of weeds for the other reservoirs. Reservoirs placed downstream show smaller amounts of water-suspended solids, with greater transmission of light and occurrence of submerged plants.
Resumo:
All methods to detect experimental loss of bone present technique limitations. The sensitivities of image and histological analyses to detect the effects of teriparatide in rats with bone loss after ovariectomy were evaluated. All methods were qualitatively valid.The standardization of methods to assess bone loss after ovariectomy is crucial to establish the degree of experimental osteoporosis. In general, methods per image or histological techniques are used. To validate these two ways to determine the degree of bone loss in ovariectomized rats, we evaluated the sensitivities of bone densitometry, conventional radiography, and histological analysis of the area occupied by collagen, detecting the effects of teriparatide treatment in the femur of ovariectomized rats with bone loss.Wistar rats were divided into three groups: a control group, in which the animals were only subjected to laparotomy; an ovariectomized group, in which bilateral removal of the ovaries was performed; and an ovariectomized + teriparatide group, in which bilateral removal of the ovaries was performed, and the animals were treated with 3 mu g/100 g/day of teriparatide. Three months following the ovariectomy, bone densitometry, radiographic densitometry, and histological analysis of the area occupied by collagen fibers were carried out in the femur diaphysis.The bone densitometry revealed 11.2% reduction in femur density; in the conventional radiography, the loss of bone mass was 14.5%, and with the histological analysis, a 40.9% reduction in the area occupied by collagen was detected in the femur diaphysis.In conclusion, histological analysis could not be quantitatively compared with the methods of bone densitometry and conventional radiography; however, all of these methods were qualitatively valid for assessing the loss of bone stemming from ovariectomy and the therapeutic effect of teriparatide in the prevention of osteoporosis.
Resumo:
Background: Early trauma care is dependent on subjective assessments and sporadic vital sign assessments. We hypothesized that near-infrared spectroscopy-measured cerebral oxygenation (regional oxygen saturation [rSO 2]) would provide a tool to detect cardiovascular compromise during active hemorrhage. We compared rSO 2 with invasively measured mixed venous oxygen saturation (SvO2), mean arterial pressure (MAP), cardiac output, heart rate, and calculated pulse pressure. Methods: Six propofol-anesthetized instrumented swine were subjected to a fixed-rate hemorrhage until cardiovascular collapse. rSO 2 was monitored with noninvasively measured cerebral oximetry; SvO2 was measured with a fiber optic pulmonary arterial catheter. As an assessment of the time responsiveness of each variable, we recorded minutes from start of the hemorrhage for each variable achieving a 5%, 10%, 15%, and 20% change compared with baseline. Results: Mean time to cardiovascular collapse was 35 minutes ± 11 minutes (54 ± 17% total blood volume). Cerebral rSO 2 began a steady decline at an average MAP of 78 mm Hg ± 17 mm Hg, well above the expected autoregulatory threshold of cerebral blood flow. The 5%, 10%, and 15% decreases in rSO 2 during hemorrhage occurred at a similar times to SvO2, but rSO 2 lagged 6 minutes behind the equivalent percentage decreases in MAP. There was a higher correlation between rSO 2 versus MAP (R =0.72) than SvO2 versus MAP (R =0.55). Conclusions: Near-infrared spectroscopy- measured rSO 2 provided reproducible decreases during hemorrhage that were similar in time course to invasively measured cardiac output and SvO2 but delayed 5 to 9 minutes compared with MAP and pulse pressure. rSO 2 may provide an earlier warning of worsening hemorrhagic shock for prompt interventions in patients with trauma when continuous arterial BP measurements are unavailable. © 2012 Lippincott Williams & Wilkins.
Resumo:
The Caribbean region remains highly vulnerable to the impacts of climate change. In order to assess the social and economic consequences of climate change for the region, the Economic Commission for Latin America and the Caribbean( ECLAC) has developed a model for this purpose. The model is referred to as the Climate Impact Assessment Model (ECLAC-CIAM) and is a tool that can simultaneously assess multiple sectoral climate impacts specific to the Caribbean as a whole and for individual countries. To achieve this goal, an Integrated Assessment Model (IAM) with a Computable General Equilibrium Core was developed comprising of three modules to be executed sequentially. The first of these modules defines the type and magnitude of economic shocks on the basis of a climate change scenario, the second module is a global Computable General Equilibrium model with a special regional and industrial classification and the third module processes the output of the CGE model to get more disaggregated results. The model has the potential to produce several economic estimates but the current default results include percentage change in real national income for individual Caribbean states which provides a simple measure of welfare impacts. With some modifications, the model can also be used to consider the effects of single sectoral shocks such as (Land, Labour, Capital and Tourism) on the percentage change in real national income. Ultimately, the model is envisioned as an evolving tool for assessing the impact of climate change in the Caribbean and as a guide to policy responses with respect to adaptation strategies.
Resumo:
In this paper, a modeling technique for small-signal stability assessment of unbalanced power systems is presented. Since power distribution systems are inherently unbalanced, due to its lines and loads characteristics, and the penetration of distributed generation into these systems is increasing nowadays, such a tool is needed in order to ensure a secure and reliable operation of these systems. The main contribution of this paper is the development of a phasor-based model for the study of dynamic phenomena in unbalanced power systems. Using an assumption on the net torque of the generator, it is possible to precisely define an equilibrium point for the phasor model of the system, thus enabling its linearization around this point, and, consequently, its eigenvalue/eigenvector analysis for small-signal stability assessment. The modeling technique presented here was compared to the dynamic behavior observed in ATP simulations and the results show that, for the generator and controller models used, the proposed modeling approach is adequate and yields reliable and precise results.
Resumo:
The main goal of this article is to consider influence assessment in models with error-prone observations and variances of the measurement errors changing across observations. The techniques enable to identify potential influential elements and also to quantify the effects of perturbations in these elements on some results of interest. The approach is illustrated with data from the WHO MONICA Project on cardiovascular disease.
Resumo:
Objectives: Our objective was to develop an experimental model for the noninvasive and objective evaluation of facial nerve regeneration in rats using a motor nerve conduction test (electromyography). Methods: Twenty-two rats were submitted to neurophysiological evaluation using motor nerve conduction of the mandibular branch of the facial nerve to obtain the compound muscle action potentials (CMAPs). To record the CM APs, we used two needle electrodes that were inserted into the lower lip muscle of the rat. A supramaximal electrical stimulus was applied, and the values of CMAP latency, amplitude, length, area, and stimulus intensity obtained from each side were compared by use of the Wilcoxon test. Results: There was no significant difference (all p > 0.05) in latency, amplitude, duration, area, or intensity of stimuli between the two sides. The amplitudes ranged between 1.61 and 8.30 mV, the latencies between 1.03 and 1.97 ms, and the stimulus intensities between 1.50 and 2.90 mA. Conclusions: This is a noninvasive, easy, and highly reproducible method that contributes to an improvement of the techniques previously described and may contribute to future studies of the degeneration and regeneration of the facial nerve.
Resumo:
The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.
Resumo:
Among the experimental methods commonly used to define the behaviour of a full scale system, dynamic tests are the most complete and efficient procedures. A dynamic test is an experimental process, which would define a set of characteristic parameters of the dynamic behaviour of the system, such as natural frequencies of the structure, mode shapes and the corresponding modal damping values associated. An assessment of these modal characteristics can be used both to verify the theoretical assumptions of the project, to monitor the performance of the structural system during its operational use. The thesis is structured in the following chapters: The first introductive chapter recalls some basic notions of dynamics of structure, focusing the discussion on the problem of systems with multiply degrees of freedom (MDOF), which can represent a generic real system under study, when it is excited with harmonic force or in free vibration. The second chapter is entirely centred on to the problem of dynamic identification process of a structure, if it is subjected to an experimental test in forced vibrations. It first describes the construction of FRF through classical FFT of the recorded signal. A different method, also in the frequency domain, is subsequently introduced; it allows accurately to compute the FRF using the geometric characteristics of the ellipse that represents the direct input-output comparison. The two methods are compared and then the attention is focused on some advantages of the proposed methodology. The third chapter focuses on the study of real structures when they are subjected to experimental test, where the force is not known, like in an ambient or impact test. In this analysis we decided to use the CWT, which allows a simultaneous investigation in the time and frequency domain of a generic signal x(t). The CWT is first introduced to process free oscillations, with excellent results both in terms of frequencies, dampings and vibration modes. The application in the case of ambient vibrations defines accurate modal parameters of the system, although on the damping some important observations should be made. The fourth chapter is still on the problem of post processing data acquired after a vibration test, but this time through the application of discrete wavelet transform (DWT). In the first part the results obtained by the DWT are compared with those obtained by the application of CWT. Particular attention is given to the use of DWT as a tool for filtering the recorded signal, in fact in case of ambient vibrations the signals are often affected by the presence of a significant level of noise. The fifth chapter focuses on another important aspect of the identification process: the model updating. In this chapter, starting from the modal parameters obtained from some environmental vibration tests, performed by the University of Porto in 2008 and the University of Sheffild on the Humber Bridge in England, a FE model of the bridge is defined, in order to define what type of model is able to capture more accurately the real dynamic behaviour of the bridge. The sixth chapter outlines the necessary conclusions of the presented research. They concern the application of a method in the frequency domain in order to evaluate the modal parameters of a structure and its advantages, the advantages in applying a procedure based on the use of wavelet transforms in the process of identification in tests with unknown input and finally the problem of 3D modeling of systems with many degrees of freedom and with different types of uncertainty.
Resumo:
Spatial prediction of hourly rainfall via radar calibration is addressed. The change of support problem (COSP), arising when the spatial supports of different data sources do not coincide, is faced in a non-Gaussian setting; in fact, hourly rainfall in Emilia-Romagna region, in Italy, is characterized by abundance of zero values and right-skeweness of the distribution of positive amounts. Rain gauge direct measurements on sparsely distributed locations and hourly cumulated radar grids are provided by the ARPA-SIMC Emilia-Romagna. We propose a three-stage Bayesian hierarchical model for radar calibration, exploiting rain gauges as reference measure. Rain probability and amounts are modeled via linear relationships with radar in the log scale; spatial correlated Gaussian effects capture the residual information. We employ a probit link for rainfall probability and Gamma distribution for rainfall positive amounts; the two steps are joined via a two-part semicontinuous model. Three model specifications differently addressing COSP are presented; in particular, a stochastic weighting of all radar pixels, driven by a latent Gaussian process defined on the grid, is employed. Estimation is performed via MCMC procedures implemented in C, linked to R software. Communication and evaluation of probabilistic, point and interval predictions is investigated. A non-randomized PIT histogram is proposed for correctly assessing calibration and coverage of two-part semicontinuous models. Predictions obtained with the different model specifications are evaluated via graphical tools (Reliability Plot, Sharpness Histogram, PIT Histogram, Brier Score Plot and Quantile Decomposition Plot), proper scoring rules (Brier Score, Continuous Rank Probability Score) and consistent scoring functions (Root Mean Square Error and Mean Absolute Error addressing the predictive mean and median, respectively). Calibration is reached and the inclusion of neighbouring information slightly improves predictions. All specifications outperform a benchmark model with incorrelated effects, confirming the relevance of spatial correlation for modeling rainfall probability and accumulation.