932 resultados para Higher order interior points method (HOIPM)
Resumo:
Este artigo apresenta um estudo experimental de técnicas de identificação paramétrica aplicadas à modelagem dinâmica de um servidor web Apache. Foi desenvolvido um arranjo experimental para simular variações de carga no servidor. O arranjo é composto por dois computadores PC, sendo um deles utilizado para executar o servidor Apache e o outro utilizado como um gerador de carga, solicitando requisições de serviço ao servidor Apache. Foram estimados modelos paramétricos auto-regressivos (AR) para diferentes pontos de operação e de condição de carga. Cada ponto de operação foi definido em termos dos valores médios para o parâmetro de entrada MaxClients (parâmetro utilizado para definir o número máximo de processos ativos) e a saída percentual de consumo de CPU (Central Processing Unit) do servidor Apache. Para cada ponto de operação foram coletadas 600 amostras, com um intervalo de amostragem de 5 segundos. Metade do conjunto de amostras coletadas em cada ponto de operação foi utilizada para estimação do modelo, enquanto que a outra metade foi utilizada para validação. Um estudo da ordem mais adequada do modelo mostrou que, para um ponto de operação com valor reduzido de MaxClients, um modelo AR de 7a ordem pode ser satisfatório. Para valores mais elevados de MaxClients, os resultados mostraram que são necessários modelos de ordem mais elevada, devido às não-linearidades inerentes ao sistema.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A GC method to determine caprolactam in water, 15 ethanol, and olive oil food simulants was developed and validated. Linear ranges varied from 0.96 to 642.82 g/mL for water, 0.64 to 800.32 g/mL for 15 ethanol, and 1.06 to 1062.34 g/g for olive oil, with correlation coefficients higher than 0.999. Method precision studies showed RSD values lower than 5.45, while method accuracy studies showed recovery from 72 to 111 for all simulants. The effect of gamma irradiation on caprolactam migration from multilayer polyamide 6 (PA-6) films intended for cheese into water, 15 ethanol, olive oil, and 3 acetic acid simulants was also studied. For migration assay, non-irradiated and irradiated (12 kGy) films were placed in contact with the simulant and exposed at 40C for 10 days. The validated method was used to quantify caprolactam migration from multilayer PA-6 films into the simulants, which ranged from 1.03 to 7.59 mg/kg for non-irradiated films, and from 4.82 to 11.32 mg/kg for irradiated films. Irradiation caused almost no changes in caprolactam levels, with the exception of olive oil, which showed an increase in the caprolactam level. All multilayer PA-6 films were in accordance with the requirements of the legislation for caprolactam migration.
Resumo:
A new approach called the Modified Barrier Lagrangian Function (MBLF) to solve the Optimal Reactive Power Flow problem is presented. In this approach, the inequality constraints are treated by the Modified Barrier Function (MBF) method, which has a finite convergence property: i.e. the optimal solution in the MBF method can actually be in the bound of the feasible set. Hence, the inequality constraints can be precisely equal to zero. Another property of the MBF method is that the barrier parameter does not need to be driven to zero to attain the solution. Therefore, the conditioning of the involved Hessian matrix is greatly enhanced. In order to show this, a comparative analysis of the numeric conditioning of the Hessian matrix of the MBLF approach, by the decomposition in singular values, is carried out. The feasibility of the proposed approach is also demonstrated with comparative tests to Interior Point Method (IPM) using various IEEE test systems and two networks derived from Brazilian generation/transmission system. The results show that the MBLF method is computationally more attractive than the IPM in terms of speed, number of iterations and numerical conditioning. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal-Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Two parametrically-induced phenomena are addressed in the context of a double pendulum subject to a vertical base excitation. First, the parametric resonances that cause the stable downward vertical equilibrium to bifurcate into large-amplitude periodic solutions are investigated extensively. Then the stabilization of the unstable upward equilibrium states through the parametric action of the high-frequency base motion is documented in the experiments and in the simulations. It is shown that there is a region in the plane of the excitation frequency and amplitude where all four unstable equilibrium states can be stabilized simultaneously in the double pendulum. The parametric resonances of the two modes of the base-excited double pendulum are studied both theoretically and experimentally. The transition curves (i.e., boundaries of the dynamic instability regions) are constructed asymptotically via the method of multiple scales including higher-order effects. The bifurcations characterizing the transitions from the trivial equilibrium to the periodic solutions are computed by either continuation methods and or by time integration and compared with the theoretical and experimental results.
Resumo:
The boundary layer over concave surfaces can be unstable due to centrifugal forces, giving rise to Goertler vortices. These vortices create two regions in the spanwise direction—the upwash and downwash regions. The downwash region is responsible for compressing the boundary layer toward the wall, increasing the heat transfer rate. The upwash region does the opposite. In the nonlinear development of the Goertler vortices, it can be observed that the upwash region becomes narrow and the spanwise–average heat transfer rate is higher than that for a Blasius boundary layer. This paper analyzes the influence of the spanwise wavelength of the Goertler the heat transfer. The equation is written in vorticity-velocity formulation. The time integration is done via a classical fourth-order Runge-Kutta method. The spatial derivatives are calculated using high-order compact finite difference and spectral methods. Three different wavelengths are analyzed. The results show that steady Goertler flow can increase the heat transfer rates to values close to the values of turbulence, without the existence of a secondary instability. The geometry (and computation domain) are presented
Resumo:
Abstract This paper describes a design methodology for piezoelectric energy harvester s that thinly encapsulate the mechanical devices and expl oit resonances from higher- order vibrational modes. The direction of polarization determines the sign of the pi ezoelectric tensor to avoid cancellations of electric fields from opposite polarizations in the same circuit. The resultant modified equations of state are solved by finite element method (FEM). Com- bining this method with the solid isotropic material with penalization (SIMP) method for piezoelectric material, we have developed an optimization methodology that optimizes the piezoelectric material layout and polarization direc- tion. Updating the density function of the SIMP method is performed based on sensitivity analysis, the sequen- tial linear programming on the early stage of the opti- mization, and the phase field method on the latter stage
Resumo:
Im Mittelpunkt dieser Arbeit steht Beweis der Existenz- und Eindeutigkeit von Quadraturformeln, die für das Qualokationsverfahren geeignet sind. Letzteres ist ein von Sloan, Wendland und Chandler entwickeltes Verfahren zur numerischen Behandlung von Randintegralgleichungen auf glatten Kurven (allgemeiner: periodische Pseudodifferentialgleichungen). Es erreicht die gleichen Konvergenzordnungen wie das Petrov-Galerkin-Verfahren, wenn man durch den Operator bestimmte Quadraturformeln verwendet. Zunächst werden die hier behandelten Pseudodifferentialoperatoren und das Qualokationsverfahren vorgestellt. Anschließend wird eine Theorie zur Existenz und Eindeutigkeit von Quadraturformeln entwickelt. Ein wesentliches Hilfsmittel hierzu ist die hier bewiesene Verallgemeinerung eines Satzes von Nürnberger über die Existenz und Eindeutigkeit von Quadraturformeln mit positiven Gewichten, die exakt für Tschebyscheff-Räume sind. Es wird schließlich gezeigt, dass es stets eindeutig bestimmte Quadraturformeln gibt, welche die in den Arbeiten von Sloan und Wendland formulierten Bedingungen erfüllen. Desweiteren werden 2-Punkt-Quadraturformeln für so genannte einfache Operatoren bestimmt, mit welchen das Qualokationsverfahren mit einem Testraum von stückweise konstanten Funktionen eine höhere Konvergenzordnung hat. Außerdem wird gezeigt, dass es für nicht-einfache Operatoren im Allgemeinen keine Quadraturformel gibt, mit der die Konvergenzordnung höher als beim Petrov-Galerkin-Verfahren ist. Das letzte Kapitel beinhaltet schließlich numerische Tests mit Operatoren mit konstanten und variablen Koeffizienten, welche die theoretischen Ergebnisse der vorangehenden Kapitel bestätigen.
Resumo:
A path integral simulation algorithm which includes a higher-order Trotter approximation (HOA)is analyzed and compared to an approach which includes the correct quantum mechanical pair interaction (effective Propagator (EPr)). It is found that the HOA algorithmconverges to the quantum limit with increasing Trotter number P as P^{-4}, while the EPr algorithm converges as P^{-2}.The convergence rate of the HOA algorithm is analyzed for various physical systemssuch as a harmonic chain,a particle in a double-well potential, gaseous argon, gaseous helium and crystalline argon. A new expression for the estimator for the pair correlation function in the HOA algorithm is derived. A new path integral algorithm, the hybrid algorithm, is developed.It combines an exact treatment of the quadratic part of the Hamiltonian and thehigher-order Trotter expansion techniques.For the discrete quantum sine-Gordon chain (DQSGC), it is shown that this algorithm works more efficiently than all other improved path integral algorithms discussed in this work. The new simulation techniques developed in this work allow the analysis of theDQSGC and disordered model systems in the highly quantum mechanical regime using path integral molecular dynamics (PIMD)and adiabatic centroid path integral molecular dynamics (ACPIMD).The ground state phonon dispersion relation is calculated for the DQSGC by the ACPIMD method.It is found that the excitation gap at zero wave vector is reduced by quantum fluctuations. Two different phases exist: One phase with a finite excitation gap at zero wave vector, and a gapless phase where the excitation gap vanishes.The reaction of the DQSGC to an external driving force is analyzed at T=0.In the gapless phase the system creeps if a small force is applied, and in the phase with a gap the system is pinned. At a critical force, the systems undergo a depinning transition in both phases and flow is induced. The analysis of the DQSGC is extended to models with disordered substrate potentials. Three different cases are analyzed: Disordered substrate potentials with roughness exponent H=0, H=1/2,and a model with disordered bond length. For all models, the ground state phonon dispersion relation is calculated.
Resumo:
The work presented in this doctoral thesis is a facile procedure, thermal decomposition, forrnthe synthesis of different types of monodisperse heterodimer M@iron oxide (M= Cu, Co, Nirnand Pt) and single ferrites, MFe2O4 (M= Cu and Co), nanoparticles. In the following chapter,rnwe study the synthesis of these monodiperse nanoparticles with the similar iron precursorrn(iron pentacarbonyl) and different transition metal precursors such as metalrnacetate/acetylacetonate/formate precursors in the presence of various surfactants and solvents.rnAccording to their decomposition temperatures and reducing condition, a specific and suitablernroute was designed for the formation of Metal@Metal oxide or MFe2O4 nanoparticlesrn(Metal/M=transition metal).rnOne of the key purposes in the formation of nanocrystals is the development of syntheticrnpathways for designing and controlling the composition, shape and size of predictedrnnanostructures. The ability to arrange different nanosized domains of metallic and magneticrnmaterials into a single heterodimer nanostructure offers an interesting direction to engineerrnthem with multiple functionalities or enhanced properties of one domain. The presence andrnrole of surfactants and solvents in these reactions result in a variety of nanocrystal shapes. Therncrystalline phase, the growth rate and the orientation of growth parameters along certainrndirections of these structures can be chemically modulated by using suitable surfactants. In allrnnovel reported heterodimer nanostructures in this thesis, initially metals were preformed andrnthen by the injection of iron precursor in appropriate temperature, iron oxide nanoparticlesrnwere started to nucleate on the top or over the surfaces of metal nanoparticles. Ternary phasesrnof spherical CuxFe3-xO4 and CoFe2O4 ferrites nanoparticles were designed to synthesis just byrnlittle difference in diffusion step with the formation of mentioned phase separated heterodimerrnnanoparticles. In order to use these magnetic nanoparticles in biomedical and catalysisrnapplications, they should be transferred into the water phase solution, therefore they werernfunctionalized by a multifunctional polymeric ligand. These functionalized nanoparticles werernstable against aggregation and precipitation in aqueous media for a long time. Magneticrnresonance imaging and catalytic reactivities are two promising applications which have beenrnutilized for these magnetic nanoparticles in this thesis.rnThis synthetic method explained in the following chapters can be extended to the synthesis ofrnother heterostructured nanomaterials such as Ni@MnO or M@M@iron oxide (M=transitionrnmetal) or to use these multidomain particles as building blocks for higher order structures.
Resumo:
The Scilla rock avalanche occurred on 6 February 1783 along the coast of the Calabria region (southern Italy), close to the Messina Strait. It was triggered by a mainshock of the Terremoto delle Calabrie seismic sequence, and it induced a tsunami wave responsible for more than 1500 casualties along the neighboring Marina Grande beach. The main goal of this work is the application of semi-analtycal and numerical models to simulate this event. The first one is a MATLAB code expressly created for this work that solves the equations of motion for sliding particles on a two-dimensional surface through a fourth-order Runge-Kutta method. The second one is a code developed by the Tsunami Research Team of the Department of Physics and Astronomy (DIFA) of the Bologna University that describes a slide as a chain of blocks able to interact while sliding down over a slope and adopts a Lagrangian point of view. A wide description of landslide phenomena and in particular of landslides induced by earthquakes and with tsunamigenic potential is proposed in the first part of the work. Subsequently, the physical and mathematical background is presented; in particular, a detailed study on derivatives discratization is provided. Later on, a description of the dynamics of a point-mass sliding on a surface is proposed together with several applications of numerical and analytical models over ideal topographies. In the last part, the dynamics of points sliding on a surface and interacting with each other is proposed. Similarly, different application on an ideal topography are shown. Finally, the applications on the 1783 Scilla event are shown and discussed.
Resumo:
Generalized linear mixed models (GLMM) are generalized linear models with normally distributed random effects in the linear predictor. Penalized quasi-likelihood (PQL), an approximate method of inference in GLMMs, involves repeated fitting of linear mixed models with “working” dependent variables and iterative weights that depend on parameter estimates from the previous cycle of iteration. The generality of PQL, and its implementation in commercially available software, has encouraged the application of GLMMs in many scientific fields. Caution is needed, however, since PQL may sometimes yield badly biased estimates of variance components, especially with binary outcomes. Recent developments in numerical integration, including adaptive Gaussian quadrature, higher order Laplace expansions, stochastic integration and Markov chain Monte Carlo (MCMC) algorithms, provide attractive alternatives to PQL for approximate likelihood inference in GLMMs. Analyses of some well known datasets, and simulations based on these analyses, suggest that PQL still performs remarkably well in comparison with more elaborate procedures in many practical situations. Adaptive Gaussian quadrature is a viable alternative for nested designs where the numerical integration is limited to a small number of dimensions. Higher order Laplace approximations hold the promise of accurate inference more generally. MCMC is likely the method of choice for the most complex problems that involve high dimensional integrals.
Resumo:
The optimal temporal window of intravenous (IV) computed tomography (CT) cholangiography was prospectively determined. Fifteen volunteers (eight women, seven men; mean age, 38 years) underwent dynamic CT cholangiography. Two unenhanced images were acquired at the porta hepatis. Starting 5 min after initiation of IV contrast infusion (20 ml iodipamide meglumine 52%), 15 pairs of images at 5-min intervals were obtained. Attenuation of the extrahepatic bile duct (EBD) and the liver parenchyma was measured. Two readers graded visualization of the higher-order biliary branches. The first biliary opacification in the EBD occurred between 15 and 25 min (mean, 22.3 min +/- 3.2) after initiation of the contrast agent. Biliary attenuation plateaued between the 35- and the 75-min time points. Maximum hepatic parenchymal enhancement was 18.5 HU +/- 2.7. Twelve subjects demonstrated poor or non-visualization of higher-order biliary branches; three showed good or excellent visualization. Body weight and both biliary attenuation and visualization of the higher-order biliary branches correlated significantly (P<0.05). For peak enhancement of the biliary tree, CT cholangiography should be performed no earlier than 35 min after initiation of IV infusion. For a fixed contrast dose, superior visualization of the biliary system is achieved in subjects with lower body weight.
Resumo:
BACKGROUND: Little is known about the population's exposure to radio frequency electromagnetic fields (RF-EMF) in industrialized countries. OBJECTIVES: To examine levels of exposure and the importance of different RF-EMF sources and settings in a sample of volunteers living in a Swiss city. METHODS: RF-EMF exposure of 166 volunteers from Basel, Switzerland, was measured with personal exposure meters (exposimeters). Participants carried an exposimeter for 1 week (two separate weeks in 32 participants) and completed an activity diary. Mean values were calculated using the robust regression on order statistics (ROS) method. RESULTS: Mean weekly exposure to all RF-EMF sources was 0.13 mW/m(2) (0.22 V/m) (range of individual means 0.014-0.881 mW/m(2)). Exposure was mainly due to mobile phone base stations (32.0%), mobile phone handsets (29.1%) and digital enhanced cordless telecommunications (DECT) phones (22.7%). Persons owning a DECT phone (total mean 0.15 mW/m(2)) or mobile phone (0.14 mW/m(2)) were exposed more than those not owning a DECT or mobile phone (0.10 mW/m(2)). Mean values were highest in trains (1.16 mW/m(2)), airports (0.74 mW/m(2)) and tramways or buses (0.36 mW/m(2)), and higher during daytime (0.16 mW/m(2)) than nighttime (0.08 mW/m(2)). The Spearman correlation coefficient between mean exposure in the first and second week was 0.61. CONCLUSIONS: Exposure to RF-EMF varied considerably between persons and locations but was fairly consistent within persons. Mobile phone handsets, mobile phone base stations and cordless phones were important sources of exposure in urban Switzerland.