932 resultados para Heteronuclear molecules
Resumo:
A simple model potential is used to calculate Rydberg series for the molecules: nitrogen, oxygen, nitric oxide, carbon monoxide, carbon dioxide, nitrogen dioxide, nitrous oxide, acetylene, formaldehyde, formic acid, diazomethane, ketene, ethylene, allene, acetaldehyde, propyne, acrolein, dimethyl ether, 1, 3-butadiene, 2-butene, and benzene. The model potential for a molecule is taken as the sum of atomic potentials, which are calibrated to atomic data and contain no further parameters. Our results agree with experimentally measured values to within 5-10% in all cases. The results of these calculations are applied to many unresolved problems connected with the above molecules. Some of the more notable of these problems are the reassignment of states in carbon monoxide, the first ionization potential of nitrogen dioxide, the interpretation of the V state in ethylene, and the mystery bands in substituted ethylenes, the identification of the R and R’ series in benzene and the determination of the orbital scheme in benzene from electron impact data.
Resumo:
Part 1. Many interesting visual and mechanical phenomena occur in the critical region of fluids, both for the gas-liquid and liquid-liquid transitions. The precise thermodynamic and transport behavior here has some broad consequences for the molecular theory of liquids. Previous studies in this laboratory on a liquid-liquid critical mixture via ultrasonics supported a basically classical analysis of fluid behavior by M. Fixman (e. g., the free energy is assumed analytic in intensive variables in the thermodynamics)--at least when the fluid is not too close to critical. A breakdown in classical concepts is evidenced close to critical, in some well-defined ways. We have studied herein a liquid-liquid critical system of complementary nature (possessing a lower critical mixing or consolute temperature) to all previous mixtures, to look for new qualitative critical behavior. We did not find such new behavior in the ultrasonic absorption ascribable to the critical fluctuations, but we did find extra absorption due to chemical processes (yet these are related to the mixing behavior generating the lower consolute point). We rederived, corrected, and extended Fixman's analysis to interpret our experimental results in these more complex circumstances. The entire account of theory and experiment is prefaced by an extensive introduction recounting the general status of liquid state theory. The introduction provides a context for our present work, and also points out problems deserving attention. Interest in these problems was stimulated by this work but also by work in Part 3.
Part 2. Among variational theories of electronic structure, the Hartree-Fock theory has proved particularly valuable for a practical understanding of such properties as chemical binding, electric multipole moments, and X-ray scattering intensity. It also provides the most tractable method of calculating first-order properties under external or internal one-electron perturbations, either developed explicitly in orders of perturbation theory or in the fully self-consistent method. The accuracy and consistency of first-order properties are poorer than those of zero-order properties, but this is most often due to the use of explicit approximations in solving the perturbed equations, or to inadequacy of the variational basis in size or composition. We have calculated the electric polarizabilities of H2, He, Li, Be, LiH, and N2 by Hartree-Fock theory, using exact perturbation theory or the fully self-consistent method, as dictated by convenience. By careful studies on total basis set composition, we obtained good approximations to limiting Hartree-Fock values of polarizabilities with bases of reasonable size. The values for all species, and for each direction in the molecular cases, are within 8% of experiment, or of best theoretical values in the absence of the former. Our results support the use of unadorned Hartree-Pock theory for static polarizabilities needed in interpreting electron-molecule scattering data, collision-induced light scattering experiments, and other phenomena involving experimentally inaccessible polarizabilities.
Part 3. Numerical integration of the close-coupled scattering equations has been carried out to obtain vibrational transition probabilities for some models of the electronically adiabatic H2-H2 collision. All the models use a Lennard-Jones interaction potential between nearest atoms in the collision partners. We have analyzed the results for some insight into the vibrational excitation process in its dependence on the energy of collision, the nature of the vibrational binding potential, and other factors. We conclude also that replacement of earlier, simpler models of the interaction potential by the Lennard-Jones form adds very little realism for all the complication it introduces. A brief introduction precedes the presentation of our work and places it in the context of attempts to understand the collisional activation process in chemical reactions as well as some other chemical dynamics.
Resumo:
The three-photon absorption effect (3PA) of two novel symmetrical charge transfer fluorene-based molecules (abbreviated as BASF and BMOSF) has been determined by using a Q-switched Nd:YAG laser pumped with 38 ps pulses at 1064 nm in DMF. The measured 3PA cross-sections are 84 x 10(-78) and 114 x 10(-78) cm(6) s(2), respectively. The geometries and electronic excitations of these two molecules are systematically studied by PM3 and ZINDO/S methods. The relationships between 3PA cross-sections and intramolecular charge transfer are discussed micromechanically. The experimental and theoretical results have shown that the larger intramolecular charge transfer, which was characterized by the charge density difference between the ground state (SO) and the first excited state (S-I), the greater enhancement of the 3PA cross-sections. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Three-photon absorption (3PA) of two fluorene-based molecules with D-pi-D structural motifs (abbreviated as BPAF and BCZF) has been determined by using a Q-switched Nd: YAG laser pumped with 38 ps pulses at 1064 nm in DMF. The measured 3PA cross-sections are 222 and 140 x 10(-78) cm(6) s(2) for BPAF and BCZF, respectively. AM1 calculations show that attaching different donors changes the charge density distribution of the fluorene skeleton, and it is observed that the 3PA cross-section can be enhanced with increasing intramolecular charge transfer character, measured by the parameter Delta p(1)/Delta p(2)/Delta p(1)'. (c) 2005 Elsevier B.V. All fights reserved.
Resumo:
A series of benzothiazole-containing fluorene molecules have been designed and their one- and two-photon absorption properties have been investigated theoretically by using the ZINDO method. The effects of electron-excessive/deficient heterocyclic bridges as auxiliary donors (auxD)/acceptors (auxA) on TPA cross-sections were studied. The results show that the molecules with D-pi-auxA-A, D-aux D-pi-A, or D-auxD-pi-auxA-A structure types have large TPA cross-section, which can be a valuable strategy in the design of two-photon absorption materials. Also, a linear relationship between the first hyperpolarizability and the TPA cross-section is observed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Synthetic metalloporphyrin complexes are often used as analogues of natural systems, and they can be used for the preparation of new Solid Coordination Frameworks (SCFs). In this work, a series of six metalloporphyrinic compounds constructed from different meso substituted metalloporphyrins (phenyl, carboxyphenyl and sulfonatophenyl) have been structurally characterized by means of single crystal X-ray diffraction, IR spectroscopy and elemental analysis. The compounds were classified considering the dimensionality of the crystal array, referred just to coordination bonds, into 0D, 1D and 2D compounds. This way, the structural features and relationships of those crystal structures were analyzed, in order to extract conclusions not only about the dimensionality of the networks but also about possible applications of the as-obtained compounds, focusing the interest on the interactions of coordination and crystallization molecules. These interactions provide the coordination bonds and the cohesion forces which produce SCFs with different dimensionalities.
Resumo:
151 p.
Resumo:
The ability to feed on vertebrate blood has evolved many times in various arthropod clades. Consequently, saliva of blood-feeding arthropods has proven to be a rich source of antihemostatic molecules. A variety of platelet aggregation inhibitors antagonize platelet responses to wound-generated signals, including ADP, thrombin, and collagen. Anticoagulants disrupt elements of both the intrinsic and extrinsic pathways. Vasodilators include nitrophorins (nitric oxide storage and transport heme proteins), a variety of peptides that mimic endogenous vasodilatory neuropeptides, and proteins that catabolize or sequester endogenous vasoconstrictors. Multiple salivary proteins may be directed against each component of hemostasis, resulting in both redundancy and in some cases cooperative interactions between antihemostatic proteins. The complexity and redundancy of saliva ensures an efficient blood meal for the arthropod, but it also provides a diverse array of novel antihemostatic molecules for the pharmacologist.