991 resultados para H 800 R425r
Resumo:
With the widespread applications of electronic learning (e-Learning) technologies to education at all levels, increasing number of online educational resources and messages are generated from the corresponding e-Learning environments. Nevertheless, it is quite difficult, if not totally impossible, for instructors to read through and analyze the online messages to predict the progress of their students on the fly. The main contribution of this paper is the illustration of a novel concept map generation mechanism which is underpinned by a fuzzy domain ontology extraction algorithm. The proposed mechanism can automatically construct concept maps based on the messages posted to online discussion forums. By browsing the concept maps, instructors can quickly identify the progress of their students and adjust the pedagogical sequence on the fly. Our initial experimental results reveal that the accuracy and the quality of the automatically generated concept maps are promising. Our research work opens the door to the development and application of intelligent software tools to enhance e-Learning.
Resumo:
Embryogenic callus was initiated by culturing in vitro taro corm slices on agar-solidified half-strength MS medium containing 2.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) for 20 days followed by transfer to 1.0 mg/L thidiazuron (TDZ). Callus was subsequently proliferated on solid medium containing 1.0 mg/L TDZ, 0.5 mg/L 2,4- D and 800 mg/L glutamine before transfer to liquid medium containing the same components but with reduced glutamine (100 mg/L). After 3 months in liquid culture on an orbital shaker, cytoplasmically dense cell aggregates began to form. Somatic embryogenesis was induced by plating suspension cells onto solid media containing reduced levels of hormones (0.1 mg/L TDZ, 0.05 mg/L 2,4-D), high concentrations of sucrose (40–50 g/L) and biotin (1.0 mg/L). Embryo maturation and germination was then induced on media containing 0.05 mg/L benzyladenine (BA) and 0.1 mg/L indole-3-acetic acid (IAA). Histological studies of the developing embryos revealed the presence of typical shoot and root poles suggesting that these structures were true somatic embryos. The rate of somatic embryos formation was 500–3,000 per mL settledcell volume while approximately 60% of the embryos regenerated into plants.
Resumo:
Abstract—Corneal topography estimation that is based on the Placido disk principle relies on good quality of precorneal tear film and sufficiently wide eyelid (palpebral) aperture to avoid reflections from eyelashes. However, in practice, these conditions are not always fulfilled resulting in missing regions, smaller corneal coverage, and subsequently poorer estimates of corneal topography. Our aim was to enhance the standard operating range of a Placido disk videokeratoscope to obtain reliable corneal topography estimates in patients with poor tear film quality, such as encountered in those diagnosed with dry eye, and with narrower palpebral apertures as in the case of Asian subjects. This was achieved by incorporating in the instrument’s own topography estimation algorithm an image processing technique that comprises a polar-domain adaptive filter and amorphological closing operator. The experimental results from measurements of test surfaces and real corneas showed that the incorporation of the proposed technique results in better estimates of corneal topography, and, in many cases, to a significant increase in the estimated coverage area making such an enhanced videokeratoscope a better tool for clinicians.
Resumo:
The dynamic interaction between building systems and external climate is extremely complex, involving a large number of difficult-to-predict variables. In order to study the impact of climate change on the built environment, the use of building simulation techniques together with forecast weather data are often necessary. Since most of building simulation programs require hourly meteorological input data for their thermal comfort and energy evaluation, the provision of suitable weather data becomes critical. In this paper, the methods used to prepare future weather data for the study of the impact of climate change are reviewed. The advantages and disadvantages of each method are discussed. The inherent relationship between these methods is also illustrated. Based on these discussions and the analysis of Australian historic climatic data, an effective framework and procedure to generate future hourly weather data is presented. It is shown that this method is not only able to deal with different levels of available information regarding the climate change, but also can retain the key characters of a “typical” year weather data for a desired period.
Resumo:
This article examines a preliminary review and the limited evidence of over-regulation in Australian financial services. The 1997 Wallis Report and the CLERP 6 paper resulted in the amendments to Ch 7 of the Corporations Act 2001 (Cth) by the Financial Services Reform Act. Nearly a decade later the system based upon 'one-size fits all' dual track regime and a consistent licensing regime has greatly increased the costs of compliance. In the area of enforcement there has not been a dramatic change to the effective techniques applied by ASIC over other agencies such as APRA. In particular there are clear economic arguments, as well as international experiences which state that a single financial services regulator is more effective than the multi-layered approach adopted in Australia. Finally, in the superannuation area of financial services, which is worth A$800 billion there is unnecessary dual licensing and duplicated regulation with little evidence of any consumer-member benefit but at a much greater cost
Resumo:
NIR and IR spectroscopy has been applied for detection of chemical species and the nature of hydrogen bonding in arsenate complexes. The structure and spectral properties of copper(II) arsenate minerals chalcophyllite and chenevixite are compared with copper(II) sulphate minerals devilline, chalcoalumite and caledonite. Split NIR bands in the electronic spectrum of two ranges 11700-8500 cm-1 and 8500-7200 cm-1 confirm distortion of octahedral symmetry for Cu(II) in the arsenate complexes. The observed bands with maxima at 9860 and 7750 cm-1 are assigned to Cu(II) transitions 2B1g ® 2B2g and 2B1g ® 2A1g. Overlapping bands in the NIR region 4500-4000 cm-1 is the effect of multi anions OH-, (AsO4)3- and (SO4)2-. The observation of broad and diffuse bands in the range 3700-2900 cm-1 confirms strong hydrogen bonding in chalcophyllite relative to chenevixite. The position of the water bending vibrations indicates the water is strongly hydrogen bonded in the mineral structure. The strong absorption feature centred at 1644 cm-1 in chalcophyllite indicates water is strongly hydrogen bonded in the mineral structure. The H2O-bending vibrations shift to low wavenumbers in chenevixite and an additional band observed at 1390 cm-1 is related to carbonate impurity. The characterisation of IR spectra by ν3 antisymmetric stretching vibrations of (SO4)2- and (AsO4)3 ions near 1100 and 800 cm-1 respectively is the result of isomorphic substitution for arsenate by sulphate in both the minerals of chalcophyllite and chenevixite.
Resumo:
This paper investigates a wireless sensor network deployment - monitoring water quality, e.g. salinity and the level of the underground water table - in a remote tropical area of northern Australia. Our goal is to collect real time water quality measurements together with the amount of water being pumped out in the area, and investigate the impacts of current irrigation practice on the environments, in particular underground water salination. This is a challenging task featuring wide geographic area coverage (mean transmission range between nodes is more than 800 meters), highly variable radio propagations, high end-to-end packet delivery rate requirements, and hostile deployment environments. We have designed, implemented and deployed a sensor network system, which has been collecting water quality and flow measurements, e.g., water flow rate and water flow ticks for over one month. The preliminary results show that sensor networks are a promising solution to deploying a sustainable irrigation system, e.g., maximizing the amount of water pumped out from an area with minimum impact on water quality.
Resumo:
This paper presents a novel method for remaining useful life prediction using the Elliptical Basis Function (EBF) network and a Markov chain. The EBF structure is trained by a modified Expectation-Maximization (EM) algorithm in order to take into account the missing covariate set. No explicit extrapolation is needed for internal covariates while a Markov chain is constructed to represent the evolution of external covariates in the study. The estimated external and the unknown internal covariates constitute an incomplete covariate set which are then used and analyzed by the EBF network to provide survival information of the asset. It is shown in the case study that the method slightly underestimates the remaining useful life of an asset which is a desirable result for early maintenance decision and resource planning.
Resumo:
The mineral dussertite, a hydroxy-arsenate mineral of formula BaFe3+3(AsO4)2(OH)5, has been studied by Raman complimented with infrared spectroscopy. The spectra of three minerals from different origins were investigated and proved quite similar, although some minor differences were observed. In the Raman spectra of Czech dussertite, four bands are observed in the 800 to 950 cm-1 region. The bands are assigned as follows: the band at 902 cm-1 is assigned to the (AsO4)3- ν3 antisymmetric stretching mode, at 870 cm-1 to the (AsO4)3- ν1 symmetric stretching mode, and both at 859 cm-1 and 825 cm-1 to the As-OM2+/3+ stretching modes/and or hydroxyls bending modes. Raman bands at 372 and 409 cm-1 are attributed to the ν2 (AsO4)3- bending mode and the two bands at 429 and 474 cm-1 are assigned to the ν4 (AsO4)3- bending mode. An intense band at 3446 cm-1 in the infrared spectrum and a complex set of bands centred upon 3453 cm-1 in the Raman spectrum are attributed to the stretching vibrations of the hydrogen bonded (OH)- units and/or water units in the mineral structure. The broad infrared band at 3223 cm-1 is assigned to the vibrations of hydrogen bonded water molecules. Raman spectroscopy identified Raman bands attributable to (AsO4)3- and (AsO3OH)2- units.
Resumo:
A review of the literature related to issues involved in irrigation induced agricultural development (IIAD) reveals that: (1) the magnitude, sensitivity and distribution of social welfare of IIAD is not fully analysed; (2) the impacts of excessive pesticide use on farmers’ health are not adequately explained; (3) no analysis estimates the relationship between farm level efficiency and overuse of agro-chemical inputs under imperfect markets; and (4) the method of incorporating groundwater extraction costs is misleading. This PhD thesis investigates these issues by using primary data, along with secondary data from Sri Lanka. The overall findings of the thesis can be summarised as follows. First, the thesis demonstrates that Sri Lanka has gained a positive welfare change as a result of introducing new irrigation technology. The change in the consumer surplus is Rs.48,236 million, while the change in the producer surplus is Rs. 14,274 millions between 1970 and 2006. The results also show that the long run benefits and costs of IIAD depend critically on the magnitude of the expansion of the irrigated area, as well as the competition faced by traditional farmers (agricultural crowding out effects). The traditional sector’s ability to compete with the modern sector depends on productivity improvements, reducing production costs and future structural changes (spillover effects). Second, the thesis findings on pesticides used for agriculture show that, on average, a farmer incurs a cost of approximately Rs. 590 to 800 per month during a typical cultivation period due to exposure to pesticides. It is shown that the value of average loss in earnings per farmer for the ‘hospitalised’ sample is Rs. 475 per month, while it is approximately Rs. 345 per month for the ‘general’ farmers group during a typical cultivation season. However, the average willingness to pay (WTP) to avoid exposure to pesticides is approximately Rs. 950 and Rs. 620 for ‘hospitalised’ and ‘general’ farmers’ samples respectively. The estimated percentage contribution for WTP due to health costs, lost earnings, mitigating expenditure, and disutility are 29, 50, 5 and 16 per cent respectively for hospitalised farmers, while they are 32, 55, 8 and 5 per cent respectively for ‘general’ farmers. It is also shown that given market imperfections for most agricultural inputs, farmers are overusing pesticides with the expectation of higher future returns. This has led to an increase in inefficiency in farming practices which is not understood by the farmers. Third, it is found that various groundwater depletion studies in the economics literature have provided misleading optimal water extraction quantity levels. This is due to a failure to incorporate all production costs in the relevant models. It is only by incorporating quality changes to quantity deterioration, that it is possible to derive socially optimal levels. Empirical results clearly show that the benefits per hectare per month considering both the avoidance costs of deepening agro-wells by five feet from the existing average, as well as the avoidance costs of maintaining the water salinity level at 1.8 (mmhos/Cm), is approximately Rs. 4,350 for farmers in the Anuradhapura district and Rs. 5,600 for farmers in the Matale district.
Resumo:
A limiting step to roll-to-roll production of dye-sensitized solar cells on metals is TiO2 sintering (10-30 min). Near infrared (NIR) heating is a novel process innovation which directly heats titanium substrates giving rapid binder removal and sintering. NIR heating (for 12.5 s) at varying power gave titanium temperatures of 545, 685 and 817 degrees Celsius yielding cells with efficiencies of 2.9, 2.8 and 2.5%. Identical cells prepared in a conventional oven (1800 s) at 500, 600 and 800 degrees Celsius gave 2.9, 2.6 and 0.2% efficiency. NIR sintering is ultrafast and has a wide process window making it ideal for rapid manufacturing on metals.
Resumo:
Undergraduates working in teams can be a problematic endeavour, sometimes exacerbated for the student by poor prior experiences, a predisposition to an individual orientation of assessment, and simply the busyness that now typifies the life of a student. But effort in pedagogical design is worthwhile where team work is often a prerequisite in terms of graduate capabilities, robust learning, increased motivation, and indeed in terms of equipping individuals for emergent knowledge-age work practice, often epitomised by collaborative effort in both blended and virtual contexts. Through an iterative approach, based extensively on the established literature, we have developed a successful scaffold which is workable with a large cohort group (n >800), such that it affords students the lived experience of being a part of a learning network. Individuals within teams work together, to develop individual components that are subsequently aggregated and reified to an overall team knowledge artefact. We describe our case and propose a pedagogical model of scaffolding based on three perspectives: conceptual, rule-based and community-driven. This model provides designers with guidelines for producing and refining assessment tasks for team-based learning.
Resumo:
The International Road Assessment Program (iRAP) is a not-for-profit organisation that works in partnership with governments and non-government organisations in all parts of the world to make roads safe. The iRAP Malaysia pilot study on 3700km of road identified the potential to prevent 31,800 deaths and serious injuries over the next 20 years from proven engineering improvements. To help ensure the iRAP data and results are available to planners and engineers, iRAP, together with staff from the Centre for Accident Research and Road Safety – Queensland (CARRS-Q) and the Malaysian Institute of Road Safety Research (MIROS), developed a five-day iRAP training course that covers the background, theory and practical application of iRAP protocols, with a special focus on Malaysian case studies. Funding was provided by a competitive grant from the Australia-Malaysia Institute.
Resumo:
Human hair fibres are ubiquitous in nature and are found frequently at crime scenes often as a result of exchange between the perpetrator, victim and/or the surroundings according to Locard's Principle. Therefore, hair fibre evidence can provide important information for crime investigation. For human hair evidence, the current forensic methods of analysis rely on comparisons of either hair morphology by microscopic examination or nuclear and mitochondrial DNA analyses. Unfortunately in some instances the utilisation of microscopy and DNA analyses are difficult and often not feasible. This dissertation is arguably the first comprehensive investigation aimed to compare, classify and identify the single human scalp hair fibres with the aid of FTIR-ATR spectroscopy in a forensic context. Spectra were collected from the hair of 66 subjects of Asian, Caucasian and African (i.e. African-type). The fibres ranged from untreated to variously mildly and heavily cosmetically treated hairs. The collected spectra reflected the physical and chemical nature of a hair from the near-surface particularly, the cuticle layer. In total, 550 spectra were acquired and processed to construct a relatively large database. To assist with the interpretation of the complex spectra from various types of human hair, Derivative Spectroscopy and Chemometric methods such as Principal Component Analysis (PCA), Fuzzy Clustering (FC) and Multi-Criteria Decision Making (MCDM) program; Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Geometrical Analysis for Interactive Aid (GAIA); were utilised. FTIR-ATR spectroscopy had two important advantages over to previous methods: (i) sample throughput and spectral collection were significantly improved (no physical flattening or microscope manipulations), and (ii) given the recent advances in FTIR-ATR instrument portability, there is real potential to transfer this work.s findings seamlessly to on-field applications. The "raw" spectra, spectral subtractions and second derivative spectra were compared to demonstrate the subtle differences in human hair. SEM images were used as corroborative evidence to demonstrate the surface topography of hair. It indicated that the condition of the cuticle surface could be of three types: untreated, mildly treated and treated hair. Extensive studies of potential spectral band regions responsible for matching and discrimination of various types of hair samples suggested the 1690-1500 cm-1 IR spectral region was to be preferred in comparison with the commonly used 1750-800 cm-1. The principal reason was the presence of the highly variable spectral profiles of cystine oxidation products (1200-1000 cm-1), which contributed significantly to spectral scatter and hence, poor hair sample matching. In the preferred 1690-1500 cm-1 region, conformational changes in the keratin protein attributed to the α-helical to β-sheet transitions in the Amide I and Amide II vibrations and played a significant role in matching and discrimination of the spectra and hence, the hair fibre samples. For gender comparison, the Amide II band is significant for differentiation. The results illustrated that the male hair spectra exhibit a more intense β-sheet vibration in the Amide II band at approximately 1511 cm-1 whilst the female hair spectra displayed more intense α-helical vibration at 1520-1515cm-1. In terms of chemical composition, female hair spectra exhibit greater intensity of the amino acid tryptophan (1554 cm-1), aspartic and glutamic acid (1577 cm-1). It was also observed that for the separation of samples based on racial differences, untreated Caucasian hair was discriminated from Asian hair as a result of having higher levels of the amino acid cystine and cysteic acid. However, when mildly or chemically treated, Asian and Caucasian hair fibres are similar, whereas African-type hair fibres are different. In terms of the investigation's novel contribution to the field of forensic science, it has allowed for the development of a novel, multifaceted, methodical protocol where previously none had existed. The protocol is a systematic method to rapidly investigate unknown or questioned single human hair FTIR-ATR spectra from different genders and racial origin, including fibres of different cosmetic treatments. Unknown or questioned spectra are first separated on the basis of chemical treatment i.e. untreated, mildly treated or chemically treated, genders, and racial origin i.e. Asian, Caucasian and African-type. The methodology has the potential to complement the current forensic analysis methods of fibre evidence (i.e. Microscopy and DNA), providing information on the morphological, genetic and structural levels.
Resumo:
Fire safety design of building structures has received greater attention in recent times due to continuing loss of properties and lives during fires. However, fire performance of light gauge cold-formed steel structures is not well understood despite its increased usage in buildings. Cold-formed steel compression members are susceptible to various buckling modes such as local and distortional buckling and their ultimate strength behaviour is governed by these buckling modes. Therefore a research project based on experimental and numerical studies was undertaken to investigate the distortional buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. Lipped channel sections with and without additional lips were selected with three thicknesses of 0.6, 0.8, and 0.95 mm and both low and high strength steels (G250 and G550 steels). More than 150 compression tests were undertaken first at ambient and elevated temperatures. Finite element models of the tested compression members were then developed by including the degradation of mechanical properties with increasing temperatures. Comparison of finite element analysis and experimental results showed that the developed finite element models were capable of simulating the distortional buckling and strength behaviour at ambient and elevated temperatures up to 800 °C. The validated model was used to determine the effects of mechanical properties, geometric imperfections and residual stresses on the distortional buckling behaviour and strength of cold-formed steel columns. This paper presents the details of the numerical study and the results. It demonstrated the importance of using accurate mechanical properties at elevated temperatures in order to obtain reliable strength characteristics of cold-formed steel columns under fire conditions.