952 resultados para Generalised Additive Model
Resumo:
Additive Fertigungsverfahren eignen sich für die wirtschaftliche Herstellung von Bauteilen im Bereich kleiner bis mittlerer Stückzahlen, da keine Formen oder Spezialwerkzeuge notwendig sind. Die erzielbaren Eigenschaften sind oftmals bereits ausreichend, um einen Einsatz auch in Serienanwendungen zu ermöglichen. Verbunden mit den Vorteilen der Technologie bezüglich einer hohen Flexibilität, sowohl während der Konstruktion als auch der Fertigung, können sich durch eine konsequente Nutzung finanzielle Einsparmöglichkeiten entlang des gesamten Produktlebenszyklus ergeben. Bezüglich der Wirtschaftlichkeit der Verfahren herrscht oftmals noch Unklarheit, da geeignete Methoden fehlen, um diese zu bewerten. Bestehende Methoden und Werkzeuge zur Bewertung der Wirtschaftlichkeit konventioneller Fertigungsverfahren sind dabei für die additive Fertigung nicht direkt nutzbar. In dem Artikel wird eine Methode zur modellgestützten Abbildung einer gesamten additiven Fertigungskette vorgestellt, welche auch die Wechselwirkungen zwischen den einzelnen Prozesskettengliedern berücksichtigen soll. Eine konkrete Aussage bezüglich der Wirtschaftlichkeit der additiven Fertigung soll somit ermöglicht werden.
Resumo:
We focus on kernels incorporating different kinds of prior knowledge on functions to be approximated by Kriging. A recent result on random fields with paths invariant under a group action is generalised to combinations of composition operators, and a characterisation of kernels leading to random fields with additive paths is obtained as a corollary. A discussion follows on some implications on design of experiments, and it is shown in the case of additive kernels that the so-called class of “axis designs” outperforms Latin hypercubes in terms of the IMSE criterion.
Resumo:
INTRODUCTION Anemia and renal impairment are important co-morbidities among patients with coronary artery disease undergoing Percutaneous Coronary Intervention (PCI). Disease progression to eventual death can be understood as the combined effect of baseline characteristics and intermediate outcomes. METHODS Using data from a prospective cohort study, we investigated clinical pathways reflecting the transitions from PCI through intermediate ischemic or hemorrhagic events to all-cause mortality in a multi-state analysis as a function of anemia (hemoglobin concentration <120 g/l and <130 g/l, for women and men, respectively) and renal impairment (creatinine clearance <60 ml/min) at baseline. RESULTS Among 6029 patients undergoing PCI, anemia and renal impairment were observed isolated or in combination in 990 (16.4%), 384 (6.4%), and 309 (5.1%) patients, respectively. The most frequent transition was from PCI to death (6.7%, 95% CI 6.1-7.3), followed by ischemic events (4.8%, 95 CI 4.3-5.4) and bleeding (3.4%, 95% CI 3.0-3.9). Among patients with both anemia and renal impairment, the risk of death was increased 4-fold as compared to the reference group (HR 3.9, 95% CI 2.9-5.4) and roughly doubled as compared to patients with either anemia (HR 1.7, 95% CI 1.3-2.2) or renal impairment (HR 2.1, 95% CI 1.5-2.9) alone. Hazard ratios indicated an increased risk of bleeding in all three groups compared to patients with neither anemia nor renal impairment. CONCLUSIONS Applying a multi-state model we found evidence for a gradient of risk for the composite of bleeding, ischemic events, or death as a function of hemoglobin value and estimated glomerular filtration rate at baseline.
Resumo:
BACKGROUND: Clinical disorders often share common symptoms and aetiological factors. Bifactor models acknowledge the role of an underlying general distress component and more specific sub-domains of psychopathology which specify the unique components of disorders over and above a general factor. METHODS: A bifactor model jointly calibrated data on subjective distress from The Mood and Feelings Questionnaire and the Revised Children's Manifest Anxiety Scale. The bifactor model encompassed a general distress factor, and specific factors for (a) hopelessness-suicidal ideation, (b) generalised worrying and (c) restlessness-fatigue at age 14 which were related to lifetime clinical diagnoses established by interviews at ages 14 (concurrent validity) and current diagnoses at 17 years (predictive validity) in a British population sample of 1159 adolescents. RESULTS: Diagnostic interviews confirmed the validity of a symptom-level bifactor model. The underlying general distress factor was a powerful but non-specific predictor of affective, anxiety and behaviour disorders. The specific factors for hopelessness-suicidal ideation and generalised worrying contributed to predictive specificity. Hopelessness-suicidal ideation predicted concurrent and future affective disorder; generalised worrying predicted concurrent and future anxiety, specifically concurrent generalised anxiety disorders. Generalised worrying was negatively associated with behaviour disorders. LIMITATIONS: The analyses of gender differences and the prediction of specific disorders was limited due to a low frequency of disorders other than depression. CONCLUSIONS: The bifactor model was able to differentiate concurrent and predict future clinical diagnoses. This can inform the development of targeted as well as non-specific interventions for prevention and treatment of different disorders.
Resumo:
We construct two-parameter families of integrable λ -deformations of two-dimensional field theories. These interpolate between a CFT (a WZW/gauged WZW model) and the non-Abelian T-dual of a principal chiral model on a group/symmetric coset space. In examples based on the SU(2) WZW model and the SU(2)/U(1) exact coset CFT, we show that these deformations are related to bi-Yang–Baxter generalisations of η-deformations via Poisson–Lie T-duality and analytic continuation. We illustrate the quantum behaviour of our models under RG flow. As a byproduct we demonstrate that the bi-Yang–Baxter σ-model for a general group is one-loop renormalisable.
Resumo:
This thesis deals with the problem of efficiently tracking 3D objects in sequences of images. We tackle the efficient 3D tracking problem by using direct image registration. This problem is posed as an iterative optimization procedure that minimizes a brightness error norm. We review the most popular iterative methods for image registration in the literature, turning our attention to those algorithms that use efficient optimization techniques. Two forms of efficient registration algorithms are investigated. The first type comprises the additive registration algorithms: these algorithms incrementally compute the motion parameters by linearly approximating the brightness error function. We centre our attention on Hager and Belhumeur’s factorization-based algorithm for image registration. We propose a fundamental requirement that factorization-based algorithms must satisfy to guarantee good convergence, and introduce a systematic procedure that automatically computes the factorization. Finally, we also bring out two warp functions to register rigid and nonrigid 3D targets that satisfy the requirement. The second type comprises the compositional registration algorithms, where the brightness function error is written by using function composition. We study the current approaches to compositional image alignment, and we emphasize the importance of the Inverse Compositional method, which is known to be the most efficient image registration algorithm. We introduce a new algorithm, the Efficient Forward Compositional image registration: this algorithm avoids the necessity of inverting the warping function, and provides a new interpretation of the working mechanisms of the inverse compositional alignment. By using this information, we propose two fundamental requirements that guarantee the convergence of compositional image registration methods. Finally, we support our claims by using extensive experimental testing with synthetic and real-world data. We propose a distinction between image registration and tracking when using efficient algorithms. We show that, depending whether the fundamental requirements are hold, some efficient algorithms are eligible for image registration but not for tracking.
Resumo:
Atherosclerosis is a complex disease resulting from the interaction of multiple genes. We have used the Ldlr knockout mouse model in an interspecific genetic cross to map atherosclerosis susceptibility loci. A total of 174 (MOLF/Ei × B6.129S7-Ldlrtm1Her) × C57BL/6J-Ldlrtm1Her backcross mice, homozygous for the Ldlr null allele, were fed a Western-type diet for 3 months and then killed for quantification of aortic lesions. A genome scan was carried out by using DNA pools and microsatellite markers spaced at ≈18-centimorgan intervals. Quantitative trait locus analysis of individual backcross mice confirmed linkages to chromosomes 4 (Athsq1, logarithm of odds = 6.2) and 6 (Athsq2, logarithm of odds = 6.7). Athsq1 affected lesions in females only whereas Athsq2 affected both sexes. Among females, the loci accounted for ≈50% of the total variance of lesion area. The susceptible allele at Athsq1 was derived from the MOLF/Ei genome whereas the susceptible allele at Athsq2 was derived from C57BL/6J. Inheritance of susceptible alleles at both loci conferred a 2-fold difference in lesion area, suggesting an additive effect of Athsq1 and Athsq2. No associations were observed between the quantitative trait loci and levels of plasma total cholesterol, high density lipoprotein cholesterol, non-high density lipoprotein cholesterol, insulin, or body weight. We provide strong evidence for complex inheritance of atherosclerosis in mice with elevated plasma low density lipoprotein cholesterol and show a major influence of nonlipoprotein-related factors on disease susceptibility. Athsq1 and Athsq2 represent candidate susceptibility loci for human atherosclerosis, most likely residing on chromosomes 1p36–32 and 12p13–12, respectively.
Resumo:
Visual responses of neurons in parietal area 7a are modulated by a combined eye and head position signal in a multiplicative manner. Neurons with multiplicative responses can act as powerful computational elements in neural networks. In the case of parietal cortex, multiplicative gain modulation appears to play a crucial role in the transformation of object locations from retinal to body-centered coordinates. It has proven difficult to uncover single-neuron mechanisms that account for neuronal multiplication. Here we show that multiplicative responses can arise in a network model through population effects. Specifically, neurons in a recurrently connected network with excitatory connections between similarly tuned neurons and inhibitory connections between differently tuned neurons can perform a product operation on additive synaptic inputs. The results suggest that parietal responses may be based on this architecture.
Resumo:
As additivity is a very useful property for a distance measure, a general additive distance is proposed under the stationary time-reversible (SR) model of nucleotide substitution or, more generally, under the stationary, time-reversible, and rate variable (SRV) model, which allows rate variation among nucleotide sites. A method for estimating the mean distance and the sampling variance is developed. In addition, a method is developed for estimating the variance-covariance matrix of distances, which is useful for the statistical test of phylogenies and molecular clocks. Computer simulation shows (i) if the sequences are longer than, say, 1000 bp, the SR method is preferable to simpler methods; (ii) the SR method is robust against deviations from time-reversibility; (iii) when the rate varies among sites, the SRV method is much better than the SR method because the distance is seriously underestimated by the SR method; and (iv) our method for estimating the sampling variance is accurate for sequences longer than 500 bp. Finally, a test is constructed for testing whether DNA evolution follows a general Markovian model.
Resumo:
Geralmente, nos experimentos genótipo por ambiente (G × E) é comum observar o comportamento dos genótipos em relação a distintos atributos nos ambientes considerados. A análise deste tipo de experimentos tem sido abordada amplamente para o caso de um único atributo. Nesta tese são apresentadas algumas alternativas de análise considerando genótipos, ambientes e atributos simultaneamente. A primeira, é baseada no método de mistura de máxima verossimilhança de agrupamento - Mixclus e a análise de componentes principais de 3 modos - 3MPCA, que permitem a análise de tabelas de tripla entrada, estes dois métodos têm sido muito usados na área da psicologia e da química, mas pouco na agricultura. A segunda, é uma metodologia que combina, o modelo de efeitos aditivos com interação multiplicativa - AMMI, modelo eficiente para a análise de experimentos (G × E) com um atributo e a análise de procrustes generalizada, que permite comparar configurações de pontos e proporcionar uma medida numérica de quanto elas diferem. Finalmente, é apresentada uma alternativa para realizar imputação de dados nos experimentos (G × E), pois, uma situação muito frequente nestes experimentos, é a presença de dados faltantes. Conclui-se que as metodologias propostas constituem ferramentas úteis para a análise de experimentos (G × E) multiatributo.
Resumo:
We study the effects of finite temperature on the dynamics of non-planar vortices in the classical, two-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry. To this end, we analyze a generalized Landau-Lifshitz equation including additive white noise and Gilbert damping. Using a collective variable theory with no adjustable parameters we derive an equation of motion for the vortices with stochastic forces which are shown to represent white noise with an effective diffusion constant linearly dependent on temperature. We solve these stochastic equations of motion by means of a Green's function formalism and obtain the mean vortex trajectory and its variance. We find a non-standard time dependence for the variance of the components perpendicular to the driving force. We compare the analytical results with Langevin dynamics simulations and find a good agreement up to temperatures of the order of 25% of the Kosterlitz-Thouless transition temperature. Finally, we discuss the reasons why our approach is not appropriate for higher temperatures as well as the discreteness effects observed in the numerical simulations.
Resumo:
Understanding spatial distributions and how environmental conditions influence catch-per-unit-effort (CPUE) is important for increased fishing efficiency and sustainable fisheries management. This study investigated the relationship between CPUE, spatial factors, temperature, and depth using generalized additive models. Combinations of factors, and not one single factor, were frequently included in the best model. Parameters which best described CPUE varied by geographic region. The amount of variance, or deviance, explained by the best models ranged from a low of 29% (halibut, Charlotte region) to a high of 94% (sablefish, Charlotte region). Depth, latitude, and longitude influenced most species in several regions. On the broad geographic scale, depth was associated with CPUE for every species, except dogfish. Latitude and longitude influenced most species, except halibut (Areas 4 A/D), sablefish, and cod. Temperature was important for describing distributions of halibut in Alaska, arrowtooth flounder in British Columbia, dogfish, Alaska skate, and Aleutian skate. The species-habitat relationships revealed in this study can be used to create improved fishing and management strategies.
Finite mixture regression model with random effects: application to neonatal hospital length of stay
Resumo:
A two-component mixture regression model that allows simultaneously for heterogeneity and dependency among observations is proposed. By specifying random effects explicitly in the linear predictor of the mixture probability and the mixture components, parameter estimation is achieved by maximising the corresponding best linear unbiased prediction type log-likelihood. Approximate residual maximum likelihood estimates are obtained via an EM algorithm in the manner of generalised linear mixed model (GLMM). The method can be extended to a g-component mixture regression model with the component density from the exponential family, leading to the development of the class of finite mixture GLMM. For illustration, the method is applied to analyse neonatal length of stay (LOS). It is shown that identification of pertinent factors that influence hospital LOS can provide important information for health care planning and resource allocation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The phenotypic and genetic factor structure of performance on five Multidimensional Aptitude Battery (MAB) subtests and one Wechsler Adult Intelligence Scale-Revised (WAIS-R) subtest was explored in 390 adolescent twin pairs (184 monozygotic [MZ]; 206 dizygotic (DZ)). The temporal stability of these measures was derived from a subsample of 49 twin pairs, with test-retest correlations ranging from .67 to .85. A phenotypic factor model, in which performance and verbal factors were correlated, provided a good fit to the data. Genetic modeling was based on the phenotypic factor structure, but also took into account the additive genetic (A), common environmental (C), and unique environmental (E) parameters derived from a fully saturated ACE model. The best fitting model was characterized by a genetic correlated two-factor structure with specific effects, a general common environmental factor, and overlapping unique environmental effects. Results are compared to multivariate genetic models reported in children and adults, with the most notable difference being the growing importance of common genes influencing diverse abilities in adolescence. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Subsequent to the influential paper of [Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B., 1992. An empirical comparison of alternative models of the short-term interest rate. Journal of Finance 47, 1209-1227], the generalised method of moments (GMM) has been a popular technique for estimation and inference relating to continuous-time models of the short-term interest rate. GMM has been widely employed to estimate model parameters and to assess the goodness-of-fit of competing short-rate specifications. The current paper conducts a series of simulation experiments to document the bias and precision of GMM estimates of short-rate parameters, as well as the size and power of [Hansen, L.P., 1982. Large sample properties of generalised method of moments estimators. Econometrica 50, 1029-1054], J-test of over-identifying restrictions. While the J-test appears to have appropriate size and good power in sample sizes commonly encountered in the short-rate literature, GMM estimates of the speed of mean reversion are shown to be severely biased. Consequently, it is dangerous to draw strong conclusions about the strength of mean reversion using GMM. In contrast, the parameter capturing the levels effect, which is important in differentiating between competing short-rate specifications, is estimated with little bias. (c) 2006 Elsevier B.V. All rights reserved.