976 resultados para GPU acceleration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical model is presented of an electron acceleration-as-oscillator method derived from the work of Joseph Larmor unified with J. Clerk Maxwell’s theory of vorticity for the displacement of radiation into free-space at an antenna interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present evidence for the acceleration of magnetospheric ions by reflection off two Alfvén waves, launched by the reconnection site into the inflow regions on both sides of the reconnecting magnetopause. The “exterior” wave stands in the inflow from the magnetosheath and is the magnetopause, in the sense that the majority of the field rotation occurs there. The other, “interior” wave stands in the inflow region on the magnetospheric side of the boundary. The population reflected by the interior wave is the more highly energized of the two and appears at low altitudes on open field lines, immediately equatorward of the cusp precipitation. In addition, we identify the population of magnetosheath ions transmitted across the exterior Alfvén wave, as well as a population of magnetospheric ions which are accelerated, after transmission through the interior wave, by reflection off the exterior wave. The ion populations near the X line are modeled and, with allowance for time-of-flight effects, are also derived from observations in the dayside auroral ionosphere. Agreement between observed and theoretical spectra is very good and the theory also explains the observed total fluxes and average energies of the precipitations poleward of the open/closed field line boundary. The results offer a physical interpretation of all the various classifications of precipitation into the dayside ionosphere (central plasma sheet, dayside boundary plasma sheet, void, low-latitude boundary layer, cusp, and mantle) and allow the conditions in both the magnetosphere and the magnetosheath adjacent to the X line to be studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retarding ion mass spectrometer on the Dynamics Explorer 1 spacecraft has generated a unique data set which documents, among other things, the occurrence of non-Maxwellian superthermal features in the auroral topside ionosphere distribution functions. In this paper, we provide a representative sampling of the observed features and their spatial morphology as observed at altitudes in the range from a few thousand kilometers to a few earth radii. At lower altitudes, these features appear at auroral latitudes separating regions of polar cap and subauroral light ion polar wind. The most common signature is the appearance of an upgoing energetic tail having conical lobes representing significant ion heat and number flux in all species, including O+. Transverse ion heating below the observation point at several thousand kilometers is clearly associated with O+ outflows. In some events observed, transverse acceleration apparently involves nearly the entire thermal plasma, the distribution function becomes highly anisotropic with T⊥ > T∥, and may actually develop a minimum at zero velocity, i.e., become a torus having as its axis the local magnetic field direction. At higher altitudes, the localized dayside source region appears as a field aligned flow which is dispersed tailward across the polar cap according to parallel velocity by antisunward convective flow, so that upflowing low energy O+ ions appear well within the polar cap region. While this flow can appear beamlike in a given location, the energy dispersion observed implies a very broad energy distribution at the source, extending from a few tenths of an eV to in excess of 50 eV. On the nightside, upgoing ion beams are found to be latitudinally bounded by regions of ion conics whose half angles increase with increasing separation from the beam region, indicating low altitude transverse acceleration in immediate proximity to, and below, the parallel acceleration region. These observations reveal a clear distinction between classical polar wind ion outflow and O+ enhanced superthermal flows, and confirm the importance of low altitude transverse acceleration in ionospheric plasma transport, as suggested by previous observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topside ionospheric profiles are used to study the upward field-aligned flow of thermal O+ at high latitudes. On the majority of the field lines outside the plasmasphere, the mean flux is approximately equal to the mean polar wind measured by spacecraft at greater altitudes. This is consistent with the theory of thermal light ion escape supported, via charge exchange, by upward O+ flow at lower heights. Events of larger O+ flow are detected at auroral latitudes and their occurrence is found to agree with that of transversely accelerated ions within the topside ionosphere and the magnetosphere. The effects of low altitude heating of O+ by oxygen cyclotron waves, driven by downward field-aligned currents, are considered as a possible common cause of these two types of event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the mathematical development of a body-centric nonlinear dynamic model of a quadrotor UAV that is suitable for the development of biologically inspired navigation strategies. Analytical approximations are used to find an initial guess of the parameters of the nonlinear model, then parameter estimation methods are used to refine the model parameters using the data obtained from onboard sensors during flight. Due to the unstable nature of the quadrotor model, the identification process is performed with the system in closed-loop control of attitude angles. The obtained model parameters are validated using real unseen experimental data. Based on the identified model, a Linear-Quadratic (LQ) optimal tracker is designed to stabilize the quadrotor and facilitate its translational control by tracking body accelerations. The LQ tracker is tested on an experimental quadrotor UAV and the obtained results are a further means to validate the quality of the estimated model. The unique formulation of the control problem in the body frame makes the controller better suited for bio-inspired navigation and guidance strategies than conventional attitude or position based control systems that can be found in the existing literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the emerging prevalence of smart phones and 4G LTE networks, the demand for faster-better-cheaper mobile services anytime and anywhere is ever growing. The Dynamic Network Optimization (DNO) concept emerged as a solution that optimally and continuously tunes the network settings, in response to varying network conditions and subscriber needs. Yet, the DNO realization is still at infancy, largely hindered by the bottleneck of the lengthy optimization runtime. This paper presents the design and prototype of a novel cloud based parallel solution that further enhances the scalability of our prior work on various parallel solutions that accelerate network optimization algorithms. The solution aims to satisfy the high performance required by DNO, preliminarily on a sub-hourly basis. The paper subsequently visualizes a design and a full cycle of a DNO system. A set of potential solutions to large network and real-time DNO are also proposed. Overall, this work creates a breakthrough towards the realization of DNO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic fields can change their topology through a process known as magnetic reconnection. This process in not only important for understanding the origin and evolution of the large-scale magnetic field, but is seen as a possibly efficient particle accelerator producing cosmic rays mainly through the first-order Fermi process. In this work we study the properties of particle acceleration inserted in reconnection zones and show that the velocity component parallel to the magnetic field of test particles inserted in magnetohydrodynamic (MHD) domains of reconnection without including kinetic effects, such as pressure anisotropy, the Hall term, or anomalous effects, increases exponentially. Also, the acceleration of the perpendicular component is always possible in such models. We find that within contracting magnetic islands or current sheets the particles accelerate predominantly through the first-order Fermi process, as previously described, while outside the current sheets and islands the particles experience mostly drift acceleration due to magnetic field gradients. Considering two-dimensional MHD models without a guide field, we find that the parallel acceleration stops at some level. This saturation effect is, however, removed in the presence of an out-of-plane guide field or in three-dimensional models. Therefore, we stress the importance of the guide field and fully three-dimensional studies for a complete understanding of the process of particle acceleration in astrophysical reconnection environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A possible slowing down of the cosmic expansion is investigated through a cosmographic approach. By expanding the luminosity distance to fourth order and fitting the SN Ia data from the most recent compilations (Union, Constitution and Union 2), the marginal likelihood distributions for the deceleration parameter today suggest a recent reduction of the cosmic acceleration and indicate that there is a considerable probability for q(0) > 0. Also in contrast to the prediction of the Lambda CDM model, the cosmographic q(z) reconstruction permits a cosmic expansion history where the cosmic acceleration could already have peaked and be presently slowing down, which would imply that the recent accelerated expansion of the universe is a transient phenomenon. It is also shown that to describe a transient acceleration the luminosity distance needs to be expanded at least to fourth order. The present cosmographic results depend neither on the validity of general relativity nor on the matter-energy contents of the universe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our numerical simulations show that the reconnection of magnetic field becomes fast in the presence of weak turbulence in the way consistent with the Lazarian and Vishniac (1999) model of fast reconnection. We trace particles within our numerical simulations and show that the particles can be efficiently accelerated via the first order Fermi acceleration. We discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present multiband optical polarimetric observations of the very-high energy blazar PKS 2155-304 made simultaneously with a HESS/Fermi high-energy campaign in 2008, when the source was found to be in a low state. The intense daily coverage of the data set allowed us to study in detail the temporal evolution of the emission, and we found that the particle acceleration time-scales are decoupled from the changes in the polarimetric properties of the source. We present a model in which the optical polarimetric emission originates at the polarized mm-wave core and propose an explanation for the lack of correlation between the photometric and polarimetric fluxes. The optical emission is consistent with an inhomogeneous synchrotron source in which the large-scale field is locally organized by a shock in which particle acceleration takes place. Finally, we use these optical polarimetric observations of PKS 2155-304 at a low state to propose an origin for the quiescent gamma-ray flux of the object, in an attempt to provide clues for the source of its recently established persistent TeV emission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, de Roany and Pacheco (Gen Relativ Gravit, doi:10.1007/s10714-010-1069-2) performed a Newtonian analysis on the evolution of perturbations for a class of relativistic cosmological models with Creation of Cold Dark Matter (CCDM) proposed by the present authors (Lima et al. in JCAP 1011:027, 2010). In this note we demonstrate that the basic equations adopted in their work do not recover the specific (unperturbed) CCDM model. Unlike to what happens in the original CCDM cosmology, their basic conclusions refer to a decelerating cosmological model in which there is no transition from a decelerating to an accelerating regime as required by SNe type Ia and complementary observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy balance is maintained by controlling both energy intake and energy expenditure. Thyroid hormones play a crucial role in regulating energy expenditure. Their levels are adjusted by a tight feed back-control led regulation of thyroid hormone production/incretion and by their hepatic metabolism. Thyroid hormone degradation has previously been shown to be enhanced by treatment with phenobarbital or other antiepileptic drugs due to a CAR-dependent induction of phase 11 enzymes of xenobiotic metabolism. We have recently shown, that PPAR alpha agonists synergize with phenobarbital to induce another prototypical CAR target gene, CYP2B1. Therefore, it was tested whether a PPAR alpha agonist could enhance the phenobarbital-dependent acceleration of thyroid hormone elimination. In primary cultures of rat hepatocytes the apparent half-life of T3 was reduced after induction with a combination of phenobarbital and the PPARa agonist WY14643 to a larger extent than after induction with either Compound alone. The synergistic reduction of the half-life could be attributed to a synergistic induction of CAR and the CAR target genes that code for enzymes and transporters involved in the hepatic elimination of T3, such as OATP1A1, OATP1A3, UGT1A3 and UCT1A10. The PPAR alpha-dependent CAR induction and the subsequent induction of T3-eliminating enzymes might be of physiological significance for the fasting-incluced reduction in energy expenditure by fatty acids as natural PPARa ligands. The synergism of the PPAR alpha agonist WY14643 and phenobarbital in inducing thyroid hormone breakdown might serve as a paradigm for the synergistic disruption of endocrine control by other combinations of xenobiotics. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale simulations of parts of the brain using detailed neuronal models to improve our understanding of brain functions are becoming a reality with the usage of supercomputers and large clusters. However, the high acquisition and maintenance cost of these computers, including the physical space, air conditioning, and electrical power, limits the number of simulations of this kind that scientists can perform. Modern commodity graphical cards, based on the CUDA platform, contain graphical processing units (GPUs) composed of hundreds of processors that can simultaneously execute thousands of threads and thus constitute a low-cost solution for many high-performance computing applications. In this work, we present a CUDA algorithm that enables the execution, on multiple GPUs, of simulations of large-scale networks composed of biologically realistic Hodgkin-Huxley neurons. The algorithm represents each neuron as a CUDA thread, which solves the set of coupled differential equations that model each neuron. Communication among neurons located in different GPUs is coordinated by the CPU. We obtained speedups of 40 for the simulation of 200k neurons that received random external input and speedups of 9 for a network with 200k neurons and 20M neuronal connections, in a single computer with two graphic boards with two GPUs each, when compared with a modern quad-core CPU. Copyright (C) 2010 John Wiley & Sons, Ltd.