966 resultados para GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 34K15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Кремена В. Стефанова - В тази статия са разрешени някои нелинейни интегрални неравенства, които включват максимума на неизвестната функция на две променливи. Разгледаните неравенства представляват обобщения на класическото неравенство на Гронуол-Белман. Значението на тези интегрални неравенства се определя от широките им приложения в качествените изследвания на частните диференциални уравнения с “максимуми” и е илюстрирано чрез някои директни приложения.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 35S05

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 35S05

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 45F15, 45G10, 46B38.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 34C10, 34C15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 34K15, 34C10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 34C10, 34C15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 34A08, 34A37, 49N70

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The book also covers the Second Variation, Euler-Lagrange PDE systems, and higher-order conservation laws.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resumo indisponível.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop the a posteriori error estimation of interior penalty discontinuous Galerkin discretizations for H(curl)-elliptic problems that arise in eddy current models. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The proposed a posteriori error estimator is validated by numerical experiments, illustrating its reliability and efficiency for a range of test problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a new numerical method to solve fractional differential equations. Given a fractional derivative of arbitrary real order, we present an approximation formula for the fractional operator that involves integer-order derivatives only. With this, we can rewrite FDEs in terms of a classical one and then apply any known technique. With some examples, we show the accuracy of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a new type of fractional operator, the Caputo–Katugampola derivative. The Caputo and the Caputo–Hadamard fractional derivatives are special cases of this new operator. An existence and uniqueness theorem for a fractional Cauchy type problem, with dependence on the Caputo–Katugampola derivative, is proven. A decomposition formula for the Caputo–Katugampola derivative is obtained. This formula allows us to provide a simple numerical procedure to solve the fractional differential equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the second order discontinuous equation in the real line, (a(t)φ(u′(t)))′ = f(t,u(t),u′(t)), a.e.t∈R, u(-∞) = ν⁻, u(+∞)=ν⁺, with φ an increasing homeomorphism such that φ(0)=0 and φ(R)=R, a∈C(R,R\{0})∩C¹(R,R) with a(t)>0, or a(t)<0, for t∈R, f:R³→R a L¹-Carathéodory function and ν⁻,ν⁺∈R such that ν⁻<ν⁺. We point out that the existence of heteroclinic solutions is obtained without asymptotic or growth assumptions on the nonlinearities φ and f. Moreover, as far as we know, this result is even new when φ(y)=y, that is, for equation (a(t)u′(t))′=f(t,u(t),u′(t)), a.e.t∈R.