998 resultados para Feminine images


Relevância:

20.00% 20.00%

Publicador:

Resumo:

STUDY DESIGN.: Retrospective radiologic study on a prospective patient cohort. OBJECTIVE.: To devise a qualitative grading of lumbar spinal stenosis (LSS), study its reliability and clinical relevance. SUMMARY OF BACKGROUND DATA.: Radiologic stenosis is assessed commonly by measuring dural sac cross-sectional area (DSCA). Great variation is observed though in surfaces recorded between symptomatic and asymptomatic individuals. METHODS.: We describe a 7-grade classification based on the morphology of the dural sac as observed on T2 axial magnetic resonance images based on the rootlet/cerebrospinal fluid ratio. Grades A and B show cerebrospinal fluid presence while grades C and D show none at all. The grading was applied to magnetic resonance images of 95 subjects divided in 3 groups as follows: 37 symptomatic LSS surgically treated patients; 31 symptomatic LSS conservatively treated patients (average follow-up, 2.5 and 3.1 years); and 27 low back pain (LBP) sufferers. DSCA was also digitally measured. We studied intra- and interobserver reliability, distribution of grades, relation between morphologic grading and DSCA, as well relation between grades, DSCA, and Oswestry Disability Index. RESULTS.: Average intra- and interobserver agreement was substantial and moderate, respectively (k = 0.65 and 0.44), whereas they were substantial for physicians working in the study originating unit. Surgical patients had the smallest DSCA. A larger proportion of C and D grades was observed in the surgical group. Surface measurementsresulted in overdiagnosis of stenosis in 35 patients and under diagnosis in 12. No relation could be found between stenosis grade or DSCA and baseline Oswestry Disability Index or surgical result. C and D grade patients were more likely to fail conservative treatment, whereas grades A and B were less likely to warrant surgery. CONCLUSION.: The grading defines stenosis in different subjects than surface measurements alone. Since it mainly considers impingement of neural tissue it might be a more appropriate clinical and research tool as well as carrying a prognostic value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we introduce a highly efficient reversible data hiding system. It is based on dividing the image into tiles and shifting the histograms of each image tile between its minimum and maximum frequency. Data are then inserted at the pixel level with the largest frequency to maximize data hiding capacity. It exploits the special properties of medical images, where the histogram of their nonoverlapping image tiles mostly peak around some gray values and the rest of the spectrum is mainlyempty. The zeros (or minima) and peaks (maxima) of the histograms of the image tiles are then relocated to embed the data. The grey values of some pixels are therefore modified.High capacity, high fidelity, reversibility and multiple data insertions are the key requirements of data hiding in medical images. We show how histograms of image tiles of medical images can be exploited to achieve these requirements. Compared with data hiding method applied to the whole image, our scheme can result in 30%-200% capacity improvement and still with better image quality, depending on the medical image content. Additional advantages of the proposed method include hiding data in the regions of non-interest and better exploitation of spatial masking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peer-reviewed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an advanced technique for the generation of deformation maps using synthetic aperture radar (SAR) data is presented. The algorithm estimates the linear and nonlinear components of the displacement, the error of the digital elevation model (DEM) used to cancel the topographic terms, and the atmospheric artifacts from a reduced set of low spatial resolution interferograms. The pixel candidates are selected from those presenting a good coherence level in the whole set of interferograms and the resulting nonuniform mesh tessellated with the Delauney triangulation to establish connections among them. The linear component of movement and DEM error are estimated adjusting a linear model to the data only on the connections. Later on, this information, once unwrapped to retrieve the absolute values, is used to calculate the nonlinear component of movement and atmospheric artifacts with alternate filtering techniques in both the temporal and spatial domains. The method presents high flexibility with respect to the required number of images and the baselines length. However, better results are obtained with large datasets of short baseline interferograms. The technique has been tested with European Remote Sensing SAR data from an area of Catalonia (Spain) and validated with on-field precise leveling measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tässä diplomityössä tutkitaan tekniikoita, joillavesileima lisätään spektrikuvaan, ja menetelmiä, joilla vesileimat tunnistetaanja havaitaan spektrikuvista. PCA (Principal Component Analysis) -algoritmia käyttäen alkuperäisten kuvien spektriulottuvuutta vähennettiin. Vesileiman lisääminen spektrikuvaan suoritettiin muunnosavaruudessa. Ehdotetun mallin mukaisesti muunnosavaruuden komponentti korvattiin vesileiman ja toisen muunnosavaruuden komponentin lineaarikombinaatiolla. Lisäyksessä käytettävää parametrijoukkoa tutkittiin. Vesileimattujen kuvien laatu mitattiin ja analysoitiin. Suositukset vesileiman lisäykseen esitettiin. Useita menetelmiä käytettiin vesileimojen tunnistamiseen ja tunnistamisen tulokset analysoitiin. Vesileimojen kyky sietää erilaisia hyökkäyksiä tarkistettiin. Diplomityössä suoritettiin joukko havaitsemis-kokeita ottamalla huomioon vesileiman lisäyksessä käytetyt parametrit. ICA (Independent Component Analysis) -menetelmää pidetään yhtenä mahdollisena vaihtoehtona vesileiman havaitsemisessa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monissasovelluksissa on hyvin tärkeää vähentää valolähteen vaikutusta kohteen oikean värin havainnoimiseksi. Tämä on tarpeen mm. virtuaalisissa museoissa, telelääketieteessä, verkkokaupassa ja verkkorahassa. Tässä tutkielmassa on kehitetty tekniikkaa kirkkaiden heijastusten poistoon spektrikuvista. Työ sisältää katsauksen yleisen värillisen kuvan ymmärtämiseen, mihin perustuen analysoitiin erilaisia kirkkaiden heijastusten poistO'tekniikoita. Työssä kehitettiin uusi kirkkaiden heijastusten poistO'menetelmä, joka perustuu dikromaattiseen heijastus-malliin, joka kuvaa spektrisen datan objektin omaan väriin ja valaisevan valon väriin perustuen. Ehdotettu kirkkaiden heijastusten poistO'menetelmä hyödyntää erilaisia olemassaolevia menetelmiä, kuten pääkomponenttimenetelmää ja tiedon luokittelu-menetelmää. Yritys kehittää nopeasti toimiva algoritmi, joka myös suoriutuu tehtävästä hyvin, on onnistunut. Kokeet toteutettiin ehdotetun menetelmän mukaisesti ja toimivalla algoritmilla saatiin halutut lopputulokset. Edelleentyö sisältää ehdotuksia esitetyn algoritmin parantamiseksi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of selecting anappropriate wavelet filter is always present in signal compression based on thewavelet transform. In this report, we propose a method to select a wavelet filter from a predefined set of filters for the compression of spectra from a multispectral image. The wavelet filter selection is based on the Learning Vector Quantization (LVQ). In the training phase for the test images, the best wavelet filter for each spectrum has been found by a careful compression-decompression evaluation. Certain spectral features are used in characterizing the pixel spectra. The LVQ is used to form the best wavelet filter class for different types of spectra from multispectral images. When a new image is to be compressed, a set of spectra from that image is selected, the spectra are classified by the trained LVQand the filter associated to the largest class is selected for the compression of every spectrum from the multispectral image. The results show, that almost inevery case our method finds the most suitable wavelet filter from the pre-defined set for the compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technological progress has made a huge amount of data available at increasing spatial and spectral resolutions. Therefore, the compression of hyperspectral data is an area of active research. In somefields, the original quality of a hyperspectral image cannot be compromised andin these cases, lossless compression is mandatory. The main goal of this thesisis to provide improved methods for the lossless compression of hyperspectral images. Both prediction- and transform-based methods are studied. Two kinds of prediction based methods are being studied. In the first method the spectra of a hyperspectral image are first clustered and and an optimized linear predictor is calculated for each cluster. In the second prediction method linear prediction coefficients are not fixed but are recalculated for each pixel. A parallel implementation of the above-mentioned linear prediction method is also presented. Also,two transform-based methods are being presented. Vector Quantization (VQ) was used together with a new coding of the residual image. In addition we have developed a new back end for a compression method utilizing Principal Component Analysis (PCA) and Integer Wavelet Transform (IWT). The performance of the compressionmethods are compared to that of other compression methods. The results show that the proposed linear prediction methods outperform the previous methods. In addition, a novel fast exact nearest-neighbor search method is developed. The search method is used to speed up the Linde-Buzo-Gray (LBG) clustering method.