986 resultados para FERROMAGNETIC INTERMOLECULAR INTERACTIONS
Resumo:
We present an electronic model with long range interactions. Through the quantum inverse scattering method, integrability of the model is established using a one-parameter family of typical irreducible representations of gl(211). The eigenvalues of the conserved operators are derived in terms of the Bethe ansatz, from which the energy eigenvalues of the Hamiltonian are obtained.
Resumo:
Ataxia telangiectasia mutated (ATM) is a phosphatidyl-3-kinase-related protein kinase that functions as a central regulator of the DNA damage response in eukaryotic cells. In humans, mutations in ATM cause the devastating neurodegenerative disease ataxia telangiectasia. Previously, we characterized the homolog of ATM (AtmA) in the filamentous fungus Aspergillus nidulans. In addition to its expected role in the DNA damage response, we found that AtmA is also required for polarized hyphal growth. Here, we extended these studies by investigating which components of the DNA damage response pathway are interacting with AtmA. The AtmA(ATM) loss of function caused synthetic lethality when combined with mutation in UvsB(ATR). Our results suggest that AtmA and UvsB are interacting and they are probably partially redundant in terms of DNA damage sensing and/or repairing and polar growth. We identified and inactivated A. nidulans chkA(CHK1) and chkB(CHK2) genes. These genes are also redundantly involved in A. nidulans DNA damage response. We constructed several combinations of double mutants for Delta atmA, Delta uvsB, Delta chkA, and Delta chkB. We observed a complex genetic relationship with these mutations during the DNA replication checkpoint and DNA damage response. Finally, we observed epistatic and synergistic interactions between AtmA, and bimE(APCI), ankA(WEE1) and the cdc2-related kinase npkA, at S-phase checkpoint and in response to DNA-damaging agents.
Resumo:
Surface pressure (pi)-molecular area (A) curves were used to characterize the packing of pseudo-ternary mixed Langmuir monolayers of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and L-alpha-dioleoyl phosphatidylethanolamine (DOPE). This pseudo-ternary mixture EPC/DOPE/DOTAP has been successfully employed in liposome formulations designed for DNA non-viral vectors. Pseudo-binary mixtures were also studied as a control. Miscibility behavior was inferred from pi-A curves applying the additivity rule by calculating the excess free energy of mixture (Delta G(Exc)). The interaction between the lipids was also deduced from the surface compressional modulus (C(s)(-1)). The deviation from ideality shows dependence on the lipid polar head type and monolayer composition. For lower DOPE concentrations, the forces are predominantly attractive. However, if the monolayer is DOPE rich, the DOTAP presence disturbs the PE-PE intermolecular interaction and the net interaction is then repulsive. The ternary monolayer EPC/DOPE/DOTAP presented itself in two configurations, modulated by the DOPE content, in a similar behavior to the DOPE/DOTAP monolayers. These results contribute to the understanding of the lipid interactions and packing in self-assembled systems associated with the in vitro and in vivo stability of liposomes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Numerous studies have reported that females benefit from mating with multiple males (polyandry) by minimizing the probability of fertilization by genetically incompatible sperm. Few, however, have directly attributed variation in female reproductive success to the fertilizing capacity of sperm. In this study we report on two experiments that investigated the benefits of polyandry and the interacting effects of males and females at fertilization in the free-spawning Australian sea urchin Heliocidaris erythrogramma. In the first experiment we used a paired (split clutch) experimental design and compared fertilization rates within female egg clutches under polyandry (eggs exposed to the sperm from two males simultaneously) and monandry (eggs from the same female exposed to sperm from each of the same two males separately). Our analysis revealed a significant fertilization benefit of polyandry and strong interacting effects of males and females at fertilization. Further analysis of these data strongly suggested that the higher rates of fertilization in the polyandry treatment were due to an overrepresentation of fertilizations due to the most compatible male. To further explore the interacting effects of males and females at fertilization we performed a second factorial experiment in which four mates were crossed with two females (in all eight combinations). In addition to confirming that fertilization success is influenced by male X female interactions, this latter experiment revealed that both sexes contributed significant variance to the observed patterns of fertilization. Taken together, these findings highlight the importance of male X female interactions at fertilization and suggest that polyandry will enable females to reduce the cost of fertilization by incompatible gametes.
Resumo:
Understanding the interfacial interactions and structure is important to better design and application of organic-inorganic nanohybrids. This paper presents our recent molecular dynamic studies on organoclays and polymer nanocomposites, including the layering behavior of organoclays, structural and dynamic properties of dioctadecyldimethyl ammoniums in organoclays, and interfacial interactions and structure of polyurethane nanocomposites. The results demonstrate that the layering behaviors of organoclays are closely related to the chain length of quaternary alkyl ammoniums and cation exchangeable capacity of clays. In addition to typical layered structures such as monolayer, bilayer and pseudo-trilayer, a pseudo-quadrilayer structure was also observed in organoclays modified with dioctadecyldimethyl ammoniums (DODDMA). In such a structure, alkyl chains do not lie flat within a single layer but interlace, and also jump to the next layer or even the next nearest layer. Moreover, the diffusion constants of nitrogen and methylene atoms increase with the temperature and methelene towards the tail groups. For polyurethane nanocomposite, the van der Waals interaction between apolar alkyl chains and soft segments of polyurethane predominates the interactions between organoclay and polyurethane. Different from most bulk polyurethane systems, there is no distinct phase-separated structure for the polyurethane.
Resumo:
Amyloid-beta peptide (A beta) is pivotal to the pathogenesis of Alzheimer disease. Here we report the formation of a toxic A beta-Cu2+ complex formed via a histidine-bridged dimer, as observed at Cu2+/ peptide ratios of > 0.6:1 by EPR spectroscopy. The toxicity of the A beta-Cu2+ complex to cultured primary cortical neurons was attenuated when either the pi- or tau-nitrogen of the imidazole side chains of His were methylated, thereby inhibiting formation of the His bridge. Toxicity did not correlate with the ability to form amyloid or perturb the acyl-chain region of a lipid membrane as measured by diphenyl- 1,3,5-hexatriene anisotropy, but did correlate with lipid peroxidation and dityrosine formation. P-31 magic angle spinning solid-state NMR showed that A beta and A beta-Cu2+ complexes interacted at the surface of a lipid membrane. These findings indicate that the generation of the A beta toxic species is modulated by the Cu2+ concentration and the ability to form an intermolecular His bridge.
Resumo:
Two N-based isomeric copper(II) complexes of the macrocycle trans-6,13-dimethyl-6,13-bis(dimethylamino)1,4,8,11-tetraazacyclotetradecane (L(3)) have been synthesized and characterised spectroscopically and structurally: alpha-[CuL(3)(OH2)(2)]Cl-2, monoclinic, space group C2/m, a = 12.908(4), b = 12.433(2), c = 7.330(2) Angstrom, beta = 105.87(2)degrees, Z = 2; beta-[CuL(3)(OClO3)(2)]. 2H(2)O, monoclinic, space group P2(1)/c, a = 9.708(3), b = 9.686(3), c = 14.202(4) Angstrom, beta = 106.17(1)degrees, Z = 2. The two isomers exhibit very similar co-ordination spheres but significantly different visible electronic maxima. This difference is attributed to an intramolecular N ... H contact between the pendant dimethylamino group and an adjacent secondary amine H atom.
Resumo:
The myosin-associated giant protein kinases twitchin and titin are composed predominantly of fibronectin- and immunoglobulin-like modules, We report the crystal structures of two autoinhibited twitchin kinase fragments, one from Aplysia and a larger fragment from Caenorhabditis elegans containing an additional C-terminal immunoglobulin-like domain, The structure of the longer fragment shoes that the immunoglobulin domain contacts the protein kinase domain on the opposite side from the catalytic cleft, laterally exposing potential myosin binding residues, Together, the structures reveal the cooperative interactions between the autoregulatory region and the residues from the catalytic domain involved in protein substrate binding, ATP binding, catalysis and the activation loop, and explain the differences between the observed autoinhibitory mechanism and the one found in the structure of calmodulin-dependent kinase I.
Resumo:
Molecular dynamics simulations are used to study the interaction of low-energy Ar atoms with the Ni(001) surface, Angular scattering distributions, in and out of the plane of incidence, are investigated as a function of incident energy, angles of incidence, crystallographic orientation of the incident beam and surface temperature. The results show a clear transition to the structure scattering regime at around 2 eV. However, at lower energies, two sub-regimes are revealed by the simulations, Far energies up to 250 meV, scattering is mainly diffuse, and significant trapping on the surface is observed, At energies above this level, lobular patterns start to form and trapping decreases with the increase in energy, Generally, there is a weak temperature dependence, but variations in the angle of incidence and/or changes in the crystallographic direction, generate significant changes in the scattering patterns.
Resumo:
Background: The angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism gene contributes to the genesis of hypertension (HTN) and may help explain the relationship between obstructive sleep apnea (OSA) and HTN. However, ACE is a pleiotropic gene that has several influences, including skeletal muscle and control of ventilation. We therefore tested the hypothesis that ACE polymorphism influences OSA severity. Methods: Male OSA patients (apnea-hypopnea index [AHI] > 5 events/h) from 2 university sleep centers were evaluated by polysomnography and ACE I/D polymorphism genotyping. Results: We studied 266 males with OSA (age = 48 +/- 13y, body mass index = 29 5kg/m(2), AHI = 34 +/- 25events/h). HTN was present in 114 patients (43%) who were older (p < 0.01), heavier (p < 0.05) and had more severe OSA (p < 0.01). The I allele was associated with HTN in patients with mild to moderate OSA (p < 0.01), but not in those with severe OSA. ACE I/D polymorphism was not associated with apnea severity among normotensive patients. In contrast. the only variables independently associated with OSA severity among patients with hypertension in multivariate analysis were BMI (OR = 1.12) and 11 genotype (OR = 0.27). Conclusions: Our results indicate reciprocal interactions between OSA and HTN with ACE I/D polymorphism, suggesting that among hypertensive OSA males, the homozygous ACE I allele protects from severe OSA. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study examined group and individual factors that facilitate changes in cooperation and learning outcomes in trained and untrained work groups of elementary school-age children. The study had two foci. The first was to determine if the cooperative behaviors and interactions of children in classroom groups who were trained in cooperative learning skins were different from those of children who were given no training, and the second was to investigate small group interactions and achievement in these groups over time. The results showed that there were observable differences between student interactions in the two conditions and these differences were maintained over time. Compared with children in the untrained groups, those in the trained groups were consistently more cooperative and helpful to each other; they actively tried to involve each other in the learning task by using language which was more inclusive (e.g., frequent use of ''we''), and they gave more explanations to assist each other as they worked together. It appeared that as the children worked together over time, they became more responsive to the learning needs of each other. Furthermore, the children in the trained groups performed significantly better on the learning outcomes questionnaire than those in the untrained groups. (C) 1997 Society for the Study of School Psychology. Published by Elsevier Science Ltd.
Resumo:
The dependence of currents through the cyclic nucleotide-gated (CNG) channels of mammalian olfactory receptor neurons (ORNs) on the concentration of NaCl was studied in excised inside-out patches from their dendritic knobs using the patch-clamp technique. With a saturating concentration (100 mu M) of adenosine 3', 5'-cyclic monophosphate (cAMP), the changes in the reversal potential of macroscopic currents were studied at NaCl concentrations from 25 to 300 mM. In symmetrical NaCl solutions without the addition of divalent cations, the current-voltage relations were almost linear, reversing close to O mV. When the external NaCl concentration was maintained at 150 mM and the internal concentrations were varied, the reversal potentials of the cAMP-activated currents closely followed the Na+ equilibrium potential indicating that P-Cl/P-Na approximate to 0. However, at low external NaCl concentrations (less than or equal to 100 mM) there was some significant chloride permeability. Our results further indicated that Na+ currents through these channels: (i) did not obey the independence principle; (ii) showed saturation kinetics with K(m)s in the range of 100-150 mM and (iii) displayed a lack of voltage dependence of conductance in asymmetric solutions that suggested that ion-binding sites were situated midway along the channel. Together, these characteristics indicate that the permeation properties of the olfactory CNG channels are significantly different from those of photoreceptor CNG channels.
Resumo:
The aim of this work is to provide a quantitative method for analysis of the concentration of superparamagnetic iron oxide nanoparticles (SPION), determined by means of ferromagnetic resonance (FMR), with the nanoparticles coupled to a specific antibody (AC133), and thus to express the antigenic labeling evidence for the stem cells C D133(+). The FMR efficiency and sensitivity were proven adequate for detecting and quantifying the low amounts of iron content in the C D133(+) cells (similar to 6.16 x 10(5) pg in the volume of 2 mu l containing 4.5 x 1011 SPION). The quantitative method led to the result of 1.70 x 10(-13) mol of Fe (9.5 pg), or 7.0 x 10(6) nanoparticles per cell. For the quantification analysis via the FMR technique it was necessary to carry out a preliminary quantitative visualization of iron oxide-labeled cells in order to ensure that the nanoparticles coupled to the antibodies are indeed tied to the antigen at the stem cell surface and that the cellular morphology was conserved, as proof of the validity of this method. The quantitative analysis by means of FMR is necessary for determining the signal intensity for the study of molecular imaging by means of magnetic resonance imaging (MRI).