975 resultados para Ethanol Fermentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethanol extract and fractions from aerial parts of Eclipta alba (L.) Hassk (Asteraceae) were screened for the antibacterial and antifungal activities against different species of human pathogenic bacterial ATCC, antibiotic-resistant clinical isolates and strains of the dermatophyte Trichophyton rubrum (wild and mutant for TruMDR2 gene) using a microdilution method. Demethylwedelolactone/wedelolactone (DWL/WL) and only wedelolactone (WL), both in a high homogeneity degree, were efficient to inhibit the ATCC strains of Staphylococus aureus (Minimal Inhibitory Concentration MIC = 75 mu g/mL), Staphylococcus epidemidis (MIC = 125 mu g/mL) and Escherichia coli (MIC = 125 mu g/mL) as well as antibiotic-resistant clinical isolates of Enterococcus spp (MIC = 250 mu g/mL) and S. aureus (MIC = 125 mu g/mL). Ethanol extract was more effective than the purified fractions against Trichophyton rubrum strains (MIC = 125 mu g/mL), suggesting that anti-fungal activity is not only related to demethylwedelolactone and wedelolactone, but also to a synergistic action between these coumestans and other compounds found in that extract. Thus, this work suggests that E. alba possesses a significant antimicrobial activity, including that against multi-drug resistant microorganisms, which could be of relevance for the treatment of infectious diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose - Chronic ethanol consumption induces lipid peroxidation by increasing free radicals or reducing antioxidants and may increase damage to hepatic DNA. Tannins are polyphenolic metabolites present in various plants and one of their effects is antioxidant activity that reduces lipoperoxidation, as is the case for vitamin E. This paper aims to assess the role of tannic acid and vitamin E in lipid peroxidation and in DNA damage in rats receiving ethanol. Design/methodology/approach - A total of 60 Wistar rats were divided into six groups: control + ethanol (0-24hs), tannic acid + ethanol (0-24 hs), and vitamin E + ethanol (0-24 hs). The animals were sacrificed immediately (0 hour) or 24 hours after a period of four weeks of ethanol administration and the following measurements were made: plasma vitamin E and liver glutathione, thiobarbituric acid resistant substances, and a-tocopherol. The comet test was also applied to hepatocytes. Findings - Ethanol administration led to an increase in DNA damage (148.67 +/- 15.45 versus 172.63 +/- 18.94) during a period of 24 hours which was not detected in the groups receiving tannic acid or vitamin E. Steatosis was lower in the groups receiving tannic acid. Originality/value - The paper highlights that antioxidant role of vitamin E and of tannic acid in biological systems submitted to oxidative stress should be reevaluated, especially regarding the protective role of tannic acid against hepatic steatosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES To investigate the effects of chronic ethanol consumption on nitric oxide (NO)-mediated relaxation in rat cavernosal smooth muscle (CSM). METHODS Male wistar rats were divided into 2 groups: control and ethanol. CSM obtained from both groups were mounted in organ chambers for measurement of isometric tension. Contraction of the strips was induced by electrical field stimulation (EFS, 1-32 Hertz) and phenylephrine. We also evaluated the effect of ethanol consumption on the relaxation induced by acetylcholine (0.01-1000 mu mol L(-1)), sodium nitroprusside (SNP, 0.01-1000 mu mol L(-1)), or EFS (1-32 Hz) in strips precontracted with phenylephrine (10 mu mol L(-1)). Blood ethanol, serum testosterone levels, and basal nitrate generation were determined. Immunoexpression of endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) was also accessed. RESULTS Ethanol intake for 4 weeks significantly increased noradrenergic nerve-mediated contractions of CSM in response to EFS. The endothelium-dependent relaxation induced by acetylcholine decreased after the ethanol treatment. Ethanol consumption decreased serum testosterone levels but did not affect the nitrate levels on rat CSM. The mRNA and protein levels for eNOS and iNOS receptors were increased in CSM from ethanol-treated rats. CONCLUSIONS Ethanol consumption reduces endothelium-dependent relaxation induced by acetylcholine, but does not affect SNP or EFS-induced relaxation, suggesting that ethanol disrupts the endothelial function. Despite the overexpression of eNOS and iNOS in ethanol-treated rats, the impaired relaxation induced by acetylcholine may suggest that chronic ethanol consumption induces endothelial dysfunction. UROLOGY 74: 1250-1256, 2009. (C) 2009 Published by Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic and excessive alcohol consumption has been related to an increased risk of several cancers, including that of the liver; however, studies in animal models have yet to conclusively determine whether ethanol acts as a tumor promoter in hepatic tumorigenesis. We examined whether prolonged alcohol consumption could act as a hepatic tumor promoter after initiation by diethylnitrosamine (DEN) in a rat model. Male Sprague-Dawley rats were injected with 20 mg DEN/kg body weight 1 wk before introduction of either an ethanol liquid diet or an isoenergic control liquid diet. Hepatic pathological lesions, hepatocyte proliferation, apoptosis, PPAR alpha and PPAR gamma, and plasma insulin-like growth factor 1 IGF-1) levels were assessed after 6 and 10 mo. Mean body and liver weights, plasma IGF-1 concentration, hepatic expressions of proliferating cellular nuclear antigen and Ki-67, and cyclin D1 in ethanol-fed rats were all significantly lower after 10 mo of treatment compared with control rats. In addition, levels of hepatic PPAR gamma protein, not PPAR alpha, were significantly higher in the ethanol-fed rats after prolonged treatment. Although ethanol feeding also resulted in significantly fewer altered hepatic foci, hepatocellular adenoma was detected in ethanol-fed rats at 10 mo, but not in control rats given the same dose of DEN. Together, these results indicate that chronic, excessive ethanol consumption impairs normal hepatocyte proliferation, which is associated with reduced IGF-1 levels, but promotes hepatic carcinogenesis. J. Nutr. 141: 1049-1055, 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work studied the adverse effects of maternal exposure of rats to alcohol during lactation, on the development of their offspring. Histometric evaluation by karyometry and of the alveolar bone at the level of the first upper molar of the sucking was perfomed. Two groups of animals, one coming from mothers exposed to drinking water containing 20% ethanol during the total lactation period and the other of controls coming from mothers receiving only alcohol-free drinking water during this period. On the 21 first day of lactation the young of each group were aleatorily selected and following anesthesia, their heads severed; after histological treatment, serial 6 mu m sections on the frontal plane at the molar level, stained with hematoxilin and eosin, were obtained. The experimental results produced, suggest that sucking from ethanol-treated mothers, show retarded post-natal growth, their alveolar bones presenting scarce, little calcified trabeculae, and a more abundant bone marrow compared to controls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nine ruminally cannulated cows fed different energy sources were used to evaluate an avian-derived polyclonal antibody preparation (PAP-MV) against the specific ruminal bacteria Streptococcus bovis, Fusobacterium necrophorum, Clostridium aminophilum, Peptostreptococcus anaerobius, and Clostridium stick-landii and monensin (MON) on ruminal fermentation patterns and in vivo digestibility. The experimental design was three 3 x 3 Latin squares distinguished by the main energy source in the diet [dry-ground corn grain (CG), high-moisture corn silage (HMCS), or citrus pulp (CiPu)]. Inside each Latin square, animals received one of the feed additives per period [none (CON), MON, or PAP-MV]. Dry matter intake and ruminal fermentation variables such as pH, total short-chain fatty acids (tSCFA), which included acetate, propionate, and butyrate, as well as lactic acid and NH(3)-N concentration were analyzed in this trial. Total tract DM apparent digestibility and its fractions were estimated using chromic oxide as an external marker. Each experimental period lasted 21 d. Ruminal fluid sampling was carried out on the last day of the period at 0, 2, 4, 6, 8, 10, and 12 h after the morning meal. Ruminal pH was higher (P = 0.006) 4 h postfeeding in MON and PAP-MV groups when compared with CON. Acetate: propionate ratio was greater in PAP-MV compared with MON across sampling times. Polyclonal antibodies did not alter (P > 0.05) tSCFA, molar proportion of acetate and butyrate, or lactic acid and NH(3)-N concentration. Ruminal pH was higher (P = 0.01), 4 h postfeeding in CiPu diets compared with CG and HMCS. There was no interaction between feed additive and energy source (P > 0.05) for any of the digestibility coefficients analyzed. Starch digestibility was less (P = 0.008) in PAP-MV when compared with CON and MON. In relation to energy sources, NDF digestibility was greater (P = 0.007) in CG and CiPu vs. the HMCS diet. The digestibility of ADF was greater (P = 0.002) in CiPu diets followed by CG and HMCS. Feeding PAP-MV or monensin altered ruminal fermentation patterns and digestive function in cows; however, those changes were independent of the main energy source of the diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of aeration on characteristics of sugarcane silage. This trial aimed at evaluating, the deleterious effects of aeration time on nutritive value and other fermentative characteristics of sugarcane silage. A completely randomized design was used with three treatments and four repetitions per treatment. Fresh chopped sugarcane was exposed to aeration for 0, 4 or 8 hours, and ensiled soon After exposure, the material was ensiled in 12 laboratory silos (plastic buckets). Silos were opened 85 after ensiling, when organic acids contents and chemical composition of silages were determined. Deviation of linearity (p < 0.05) was observed for aeration time on dry matter. A positive linear effect was observed (p < 0.05) on ADF, NDF and soluble carbohydrates content, but negative for ammoniacal nitrogen content and in vitro digestibility of dry matter. For organic acids content, deviation of linearity was observed on acetic acid, with the lowest content (1.5% of DM) observed after 8 hours of aeration, and a negative linear effect was observed for lactic and butyric acids, as well as for pH values. There were no effects on ethanol concentration, which remained very high (22% of DM), regardless of aeration time. Aerobic stability of silage worsened with the increase in aeration time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethanol stimulates the production of prostaglandins in many species. The purpose of this study was to verify the effect of ethanol on the production of prostaglandin F2 alpha (PGF2 alpha) and luteolysis in bovine females. In the first experiment, Holstein cows at day 17 of the oestrous cycle were treated with 100% ethanol (0.05 ml/kg of body weight, IV; n = 5), saline (0.05 ml/kg of body weight, IV; n = 4) or synthetic prostaglandin (150 mu g of D-cloprostenol/cow, IM; n = 4). The plasma concentrations of 13, 14-dihydro-15-keto PGF2 alpha (PGFM; the main metabolite of PGF2 alpha measured in the peripheral blood) were assessed by radioimmunoassay (RIA). There was an acute release of PGFM in response to ethanol comparing to other treatments (p <= 0.05). However, only cows treated with PGF2 alpha underwent luteolysis. In the second experiment, endometrial explants of cross-bred beef cows (n = 4) slaughtered at day 17 of the oestrous cycle were cultured for 4 h. During the last 3 h, the explants were cultured with medium supplemented with 0, 0.1, I, 10 or 100 mu l of 100% ethanol/ml. Medium samples were collected at hours 1 and 4 and concentrations of PGF2 alpha were measured by RIA. Ethanol did not induce PGF2 alpha production by the endometrium. In conclusion, ethanol does not cause luteolysis in cows because it stimulates production of PGF2 alpha in extra-endometrial tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long-term effectiveness of chlorhexidine as a matrix metalloproteinase (MMP) inhibitor may be compromised when water is incompletely removed during dentin bonding. This study challenged this anti-bond degradation strategy by testing the null hypothesis that wet-bonding with water or ethanol has no effect on the effectiveness of chlorhexidine in preventing hybrid layer degradation over an 18-month period. Acid-etched dentin was bonded under pulpal pressure simulation with Scotchbond MP and Single Bond 2, with water wet-bonding or with a hydrophobic adhesive with ethanol wet-bonding, with or without pre-treatment with chlorhexidine diacetate (CHD). Resin-dentin beams were prepared for bond strength and TEM evaluation after 24 hrs and after aging in artificial saliva for 9 and 18 mos. Bonds made to ethanol-saturated dentin did not change over time with preservation of hybrid layer integrity. Bonds made to CHD pre-treated acid-etched dentin with commercial adhesives with water wet-bonding were preserved after 9 mos but not after 18 mos, with severe hybrid layer degradation. The results led to rejection of the null hypothesis and highlight the concept of biomimetic water replacement from the collagen intrafibrillar compartments as the ultimate goal in extending the longevity of resin-dentin bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To evaluate the efficacy of simplified dehydration protocols, in the absence of tubular occlusion, on bond strength and interfacial nanoleakage of a hydrophobic experimental adhesive blend to acid-etched, ethanol-dehydrated dentine immediately and after 6 months. Methods: Molars were randomly assigned to 6 treatment groups (n = 5). Under pulpal pressure simulation, dentine crowns were acid-etched with 35% H(3)PO(4) and rinsed with water. Adper Scotchbond Multi-Purpose was used for the control group. The remaining groups had their dentine surface dehydrated with ethanol solutions: group 1 = 50%, 70%, 80%, 95% and 3 x 100%, 30 s for each application; group 2 the same ethanol sequence with 15 s for each solution; groups 3, 4 and 5 used 100% ethanol only, applied in seven, three or one 30 s step, respectively. After dehydration, a primer (50% BisGMA + TEGDMA, 50% ethanol) was used, followed by the neat comonomer adhesive application. Resin composite build-ups were then prepared using an incremental technique. Specimens were stored for 24 h, sectioned into beams and stressed to failure after 24 h or after 6 months of artificial ageing. Interfacial silver leakage evaluation was performed for both storage periods (n = 5 per subgroup). Results: Group 1 showed higher bond strengths at 24 h or after 6 months of ageing (45.6 +/- 5.9(a)/43.1 +/- 3.2(a) MPa) and lower silver impregnation. Bond strength results were statistically similar to control group (41.2 +/- 3.3(ab)/38.3 +/- 4.0(ab) MPa), group 2 (40.0 +/- 3.1(ab)/38.6 +/- 3.2(ab) MPa), and group 3 at 24 h (35.5 +/- 4.3(ab) MPa). Groups 4 (34.6 +/- 5.7(bc)/25.9 +/- 4.1(c) MPa) and 5 (24.7 +/- 4.9(c)/18.2 +/- 4.2(c) MPa) resulted in lower bond strengths, extensive interfacial nanoleakage and more prominent reductions (up to 25%) in bond strengths after 6 months of ageing. Conclusions: Simplified dehydration protocols using one or three 100% ethanol applications should be avoided for the ethanol-wet bonding technique in the absence of tubular occlusion, as they showed decreased bond strength, more severe nanoleakage and reduced bond stability over time. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dentin bonding performed with hydrophobic resins using ethanol-wet bonding should be less susceptible to degradation but this hypothesis has never been validated. Objectives. This in vitro study evaluated stability of resin-dentin bonds created with an experimental three-step BisGMA/TEGDMA hydrophobic adhesive or a three-step hydrophilic adhesive after one year of accelerated aging in artificial saliva. Methods. Flat surfaces in mid-coronal dentin were obtained from 45 sound human molars and randomly divided into three groups (n = 15): an experimental three-step BisGMA/TEGDMA hydrophobic adhesive applied to ethanol (ethanol-wet bonding-GI) or water-saturated dentin (water-wet bonding-GII) and Adper Scotchbond Multi-Purpose [MP-GIII] applied, according to manufacturer instructions, to water-saturated dentin. Resin composite crowns were incrementally formed and light-cured to approximately 5 mm in height. Bonded specimens were stored in artificial saliva at 37 degrees C for 24h and sectioned into sticks. They were subjected to microtensile bond test and TEM analysis immediately and after one year. Data were analyzed with two-way ANOVA and Tukey tests. Results. MP exhibited significant reduction in microtensile bond strength after aging (24 h: 40.6 +/- 2.5(a); one year: 27.5 +/- 3.3(b); in MPa). Hybrid layer degradation was evident in all specimens examined by TEM. The hydrophobic adhesive with ethanol-wet bonding preserved bond strength (24 h: 43.7 +/- 7.4(a); one year: 39.8 +/- 2.7(a)) and hybrid layer integrity, with the latter demonstrating intact collagen fibrils and wide interfibrillar spaces. Significance. Coaxing hydrophobic resins into acid-etched dentin using ethanol-wet bonding preserves resin-dentin bond integrity without the adjunctive use of MMPs inhibitors and warrants further biocompatibility and patient safety`s studies and clinical testing. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. The aim of this study was to evaluate the influence of monomer content on fracture toughness (K(Ic)) before and after ethanol solution storage, flexural properties and degree of conversion (DC) of bisphenol A glycidyl methacrylate (Bis-GMA) co-polymers. Methods. Five formulations were tested, containing Bis-GMA (B) combined with TEGDMA (T), UDMA (U) or Bis-EMA (E), as follows (in mol%): 30B:70T; 30B:35T:35U; 30B:70U; 30B:35T:35E; 30B:70E. Bimodal filler was introduced at 80 wt%. Single-edge notched beams for fracture toughness (FT, 25 mm x 5 mm x 2.5 mm, a/w = 0.5, n = 20) and 10 mm x 2 mm x 1 mm beams for flexural strength (FS) and modulus (FM) determination (10 mm x 2 mm x 1 mm, n = 10) were built and then stored in distilled water for 24 h at 37 degrees C. All FS/FM beams and half of the FT specimens were immediately submitted to three-point bending test. The remaining FT specimens were stored in a 75%ethanol/25%water (v/v) solution for 3 months prior to testing. DC was determined with FT-Raman spectroscopy in fragments of both FT and FS/FM specimens at 24 h. Data were submitted to one-way ANOVA/Tukey test (alpha = 5%). Results. The 30B:70T composite presented the highest K(Ic) value (in MPa m(1/2)) at 24 h (1.3 +/- 0.4), statistically similar to 30B:35T:35U and 30B:70U, while 30B:70E presented the lowest value (0.5 +/- 0.1). After ethanol storage, reductions in K(Ic) ranged from 33 to 72%. The 30B:70E material presented the lowest reduction in FT and 30B:70U, the highest. DC was similar among groups (69-73%), except for 30B:70U (52 +/- 4%, p < 0.001). 30B:70U and 30B:35T:35U presented the highest FS (125 +/- 21 and 122 +/- 14 MPa, respectively), statistically different from 30B:70T or 30B:70E (92 +/- 20 and 94 +/- 16 MPa, respectively). Composites containing UDMA or Bis-EMA associated with Bis-GMA presented similar FM, statistically lower than 30B:35T:35U. Significance. Composites formulated with Bis-GMA:TEGDMA:UDMA presented the best compromise between conversion and mechanical properties. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To investigate the effect of curing rate on softening in ethanol, degree of conversion, and wear of resin composites. Methods: With a given energy density and for each of two different light-curing units (QTH or LED), the curing rate was reduced by modulating the curing mode. Thus, the irradiation of resin composite specimens (Filtek Z250, Tetric Ceram, Esthet-X) was performed in a continuous curing mode and in a pulse-delay curing mode. Wallace hardness was used to determine the softening of resin composite after storage in ethanol. Degree of conversion was determined by infrared spectroscopy (FTIR). Wear was assessed by a three-body test. Data were submitted to Levene`s test, one and three-way ANOVA, and Tukey HSD test (alpha= 0.05). Results: Immersion in ethanol, curing mode, and material all had significant effects on Wallace hardness. After ethanol storage, resin composites exposed to the pulse-delay curing mode were softer than resin composites exposed to continuous cure (P< 0.0001). Tetric Ceram was the softest material followed by Esthet-X and Filtek Z250 (P< 0.001). Only the restorative material had a significant effect on degree of conversion (P< 0.001): Esthet-X had the lowest degree of conversion followed by Filtek Z250 and Tetric Ceram. Curing mode (P= 0.007) and material (P< 0.001) had significant effect on wear. Higher wear resulted from the pulse-delay curing mode when compared to continuous curing, and Filtek Z250 showed the lowest wear followed by Esthet-X and Tetric Ceram. (Am J Dent 2011;24:115-118).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study investigated whether chronic ethanol (ETH) intake and subsequent ETH exposure of cell cultures affects osteoblast differentiation by evaluating key parameters of in vitro osteogenesis. Rats were treated with 5-20% (0.85-3.43 mM) ETH, increasing by 5% per week for a period of 4 weeks (habituation), after which the 20% level was maintained for 15 days (chronic intake). Bone-marrow stem cells from control (CONT) or ETH-treated rats were cultured in osteogenic medium which was either supplemented (ETH) or not supplemented (CONT) with 1.3 mm ethanol. Thus, four groups relating to rat treatment/culture supplementation were evaluated: (1) CONT/CONT, (2) ETH/CONT, (3) CONT/ETH and (4) ETH/ETH Cell morphology, proliferation and viability, total protein content, alkaline phosphatase (ALP) activity and bone-like nodule formation were evaluated. Chronic ethanol intake significantly reduced both food and liquid consumption and body weight gain. No difference was seen in cell morphology among treatments. Cell number was affected at 7 and 10 days as follows: CONT/CONT = CONT/ETH < ETH/CONT = ETH/ETH. Doubling time between 3 and 10 days was greater in groups of CONT animals: ETH/ETH = ETH/CONT < CONT/ETH = CONT/CONT. Cell viability and ALP activity were not affected by either animal treatment or culture exposure to ethanol. At day 21, the total protein content was affected as follows: ETH/ETH = CONT/ETH < ETH/CONT = CONT/CONT. Bone-like nodule formation was affected as follows: ETH/ETH < CONT/ETH < ETH/CONT < CONT/CONT. These results show that chronic ethanol intake, followed by the exposure of osteoblasts to ethanol, inhibited the differentiation of osteoblasts, as indicated by an increased proliferation rate and reduced bone-like nodule formation. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study evaluated the effect of different concentrations of ethanol on hardness, roughness, flexural strength, and color stability of a denture base material using a microwave-processed acrylic resin as a model system. Materials and Methods: Sixty circular (14 x 4 mm) and 60 rectangular microwave-polymerized acrylic resin specimens (65 x 10 x 3 mm(3)) were employed in this study. The sample was divided into six groups according to the ethanol concentrations used in the immersion solution, as follows: 0% (water), 4.5%, 10%, 19%, 42%, and 100%. The specimens remained immersed for 30 days at 37 degrees C. The hardness test was performed by a hardness tester equipped with a Vickers diamond penetrator, and a surface roughness tester was used to measure the surface roughness of the specimens. Flexural strength testing was carried out on a universal testing machine. Color alterations (Delta E) were measured by a portable spectrophotometer after 12 and 30 days. Variables were analyzed by ANOVA/Tukey`s test (alpha = 0.05). Results: For the range of ethanol-water solutions for immersion (water only, 4.5%, 10%, 19.5%, 42%, and 100%), the following results were obtained for hardness (13.9 +/- 2.0, 12.1 +/- 0.7, 12.9 +/- 0.9, 11.2 +/- 1.5, 5.7 +/- 0.3, 2.7 +/- 0.5 VHN), roughness (0.13 +/- 0.01, 0.15 +/- 0.07, 0.13 +/- 0.05, 0.13 +/- 0.02, 0.23 +/- 0.05, 0.41 +/- 0.19 mu m), flexural strength (90 +/- 12, 103 +/- 18, 107 +/- 16, 90 +/- 25, 86 +/- 22, 8 +/- 2 MPa), and color (0.8 +/- 0.6, 0.8 +/- 0.3, 0.7 +/- 0.4, 0.9 +/- 0.3, 1.3 +/- 0.3, 3.9 +/- 1.5 Delta E) after 30 days. Conclusions: The findings of this study showed that the ethanol concentrations of tested drinks affect the physical properties of the investigated acrylic resin. An obvious plasticizing effect was found, which could lead to a lower in vivo durability associated with alcohol consumption.