875 resultados para Essential Variable
Resumo:
The minimum chromosome number of Glomus intraradices was assessed through cloning and sequencing of the highly divergent telomere-associated sequences (TAS) and by pulsed field gel electrophoresis (PFGE). The telomere of G. intraradices, as in other filamentous fungi, consists of TTAGGG repeats, this was confirmed using Bal31 nuclease time course reactions. Telomere length was estimated to be roughly 0.9 kb by Southern blots on genomic DNA and a telomere probe. We have identified six classes of cloned chromosomal termini based on the TAS. An unusually high genetic variation was observed within two of the six TAS classes. To further assess the total number of chromosome termini, we used telomere fingerprinting. Surprisingly, all hybridization patterns showed smears, which demonstrate that TAS are remarkably variable in the G. intraradices genome. These analyses predict the presence of at least three chromosomes in G. intraradices while PFGE showed a pattern of four bands ranging from 1.2 to 1.5 Mb. Taken together, our results indicate that there are at least four chromosomes in G. intraradices but there are probably more. The information on TAS and telomeres in the G. intradicies will be essential for making a physical map of the G. intraradices genome and could provide molecular markers for future studies of genetic variation among nuclei in these multigenomic fungi.
Resumo:
Purpose:to describe the clinical features in a five generations family segregating autosomal dominant retinitis pigmentosa and to identify the causative gene Patient and Methods:Twenty five individuals of a large five-generation family originating from Western Switzerland were ascertained for phenotypic and genotypic characterization. Ophthalmologic evaluations included color vision testing, Goldman perimetry and digital fundus photography. Some patients had autofluorescence (AF) imaging, ocular coherence tomography (OCT) and ISCEV-standard full-field electroretinography (ERG). Blood samples were collected from 10 affected (4 to 70 years of age) and 15 unaffected members after informed consent. DNA was isolated and exons and intron-exons junctions of known adRP genes were sequenced using a Big Dye sequencing kit 1.1. Results:Age of onset of nightblindness and severity of progression of the disease was variable between members of the family. Some patients had early onset of nightblindess aged 3, others at mid-twenties. Most patients had visual acuity above 0.6 for the first 4 decades. Two older patients still had good vision (0.4) in their seventies. Myopia (range: -2 to -5) was noticed in most affected subjects. Fundus findings showed areas of atrophy along the arcades. The AF imaging showed a large high density ring bilaterally. A T494M change was found in exon 11 of PRPF3 gene. The change segregates with the disease in the family. Conclusion: A mutation in the PRPF3 gene is rare compared with other genes causing ADRP. Although a T494M change has been reported, our family is the first one with a variable expressivity. Mutations in PRPF3 gene can cause a variable phenotype of ADRP unlike the previously described Danish and English families. Our report gives a better understanding as to the phenotype/genotype description of ADRP due to PRPF3 mutation.
Resumo:
This research project analyzes the reactions the teacher has on students' responses. Different techniques as discourse markers, types of questions and repair sequences are taken into account, but the author puts a special emphasis on non-verbal communication. To be aware of all these ways of reacting in a class interaction is essential for an adequate task monitoring
Resumo:
RYR1 mutations are the most common cause of structural congenital myopathies and may exhibit both dominant and recessive inheritance. Histopathological findings are variable and include central cores, multi-minicores, type 1 predominance/ uniformity, fibre type disproportion, increased internal nucleation and fatty and connective tissue. Until recently, diagnostic RYR1 sequencing was limited to mutational hotspots due to the large size of the gene. Since the introduction of full RYR1 sequencing in 2007 we have detected pathogenic mutations in 77 families: 39 had dominant inheritance and 38 recessive inheritance. In some cases with presumably recessive inheritance, only one heterozygous mutation inherited from an asymptomatic parent was identified. Of 28 dominant mutations, 6 were novel; 37 of the 59 recessive mutations were also novel. Dominant mutations were more frequently in recognized hotspot regions, while recessive mutations were distributed throughout the coding sequence. Dominant mutations were predominantly missense, whereas recessive mutations included many nonsense and splice mutations expected to result in reduced RyR1 protein. There was wide clinical variability in patients with both dominant and recessive inheritance. As a group, those with dominant mutations were generally more mildly affected than those with recessive inheritance, who had earlier onset and were weaker with more functional limitations. Extraocular muscle involvement was almost exclusively observed in the recessive group. Bulbar involvement was also more prominent in this group, resulting in a larger number requiring gastrostomy insertion. In conclusion, genomic sequencing of the entire RYR1 leads to the detection of many novel mutations, but may miss large genetic rearrangements in some cases. Assigning pathogenicity to novel mutations is often difficult and interpretation of genetic results in the context of clinical, histological and, increasingly, muscle MRI findings is essential.
Resumo:
A comparative histopathological study of three snails species - Biomphalaria glabrata, B. tenagophila and B. straminea - which had been infected with Schistosoma mansoni miracidia revealed similar qualitative features, consisting of areas of sporocyst proliferation and differentiation associated with reactive host reaction, at the time they were actively eliminating great number of cercariae. However, in specimens that were exposed to miracidia but failed to eliminate cercariae later on, different histopathological pictures were observed in different snail species. While B. glabrata exhibited frequent focal (granulomatous) proliferation of amebocytes in several organs, B. tenagophila and B. straminea only rarely showed such reactive changes, suggesting that the mechanism of resistance to miracidial infection probably follows different pathways in the snail species studied
Resumo:
Two rat monoclonal antibodies (mAbs), 44-22-1 and 46-6B5, which recognize an alloreactive cytotoxic clone, 3F9, have been further tested on a panel of T hybridomas and cytotoxic T-cell clones for binding and functional activities. The mAbs recognized only those cells sharing the expression of the T-cell receptor beta-chain variable region gene V beta 6 with 3F9. All V beta 6+ cells were activated by these mAbs under cross-linking conditions and their antigen-specific activation was blocked by soluble mAb. Furthermore, depletion of 46-6B5+ normal lymph node T cells eliminated all cells expressing the epitope recognized by 44-22-1 and V beta 6 mRNA.
Resumo:
Overexpression of the polycomb group protein enhancer of zeste homologue 2 (EZH2) occurs in diverse malignancies, including prostate cancer, breast cancer, and glioblastoma multiforme (GBM). Based on its ability to modulate transcription of key genes implicated in cell cycle control, DNA repair, and cell differentiation, EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here, we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-deazaneplanocin A (DZNep), or its specific downregulation by short hairpin RNA (shRNA), strongly impairs GBM cancer stem cell (CSC) self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM CSCs, we found the expression of c-myc, recently reported to be essential for GBM CSCs, to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated downregulation of EZH2 in combination with chromatin immunoprecipitation experiments revealed that c-myc is a direct target of EZH2 in GBM CSCs. Taken together, our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM CSC maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management.
Resumo:
Trypanosomosis is the most economically important disease constraint to livestock productivity in sub-Saharan Africa and has significant negative impact in other parts of the world. Livestock are an integral component of farming systems and thus contribute significantly to food and economic security in developing countries. Current methods of control for trypanosomosis are inadequate to prevent the enormous socioeconomic losses resulting from this disease. A vaccine has been viewed as the most desirable control option. However, the complexity of the parasite's antigenic repertoire made development of a vaccine based on the variable surface glycoprotein coat unlikely. As a result, research is now focused on identifying invariant trypanosome components as potential targets for interrupting infection or infection-mediated disease. Immunosuppression appears to be a nearly universal feature of infection with African trypanosomes and thus may represent an essential element of the host-parasite relationship, possibly by reducing the host's ability to mount a protective immune response. Antibody, T cell and macrophage/monocyte responses of infected cattle are depressed in both trypanosusceptible and trypanotolerant breeds of cattle. This review describes the specific T cell and monocyte/macrophage functions that are altered in trypanosome-infected cattle and compares these disorders with those that have been described in the murine model of trypanosomosis. The identification of parasite factors that induce immunosuppression and the mechanisms that mediate depressed immune responses might suggest novel disease intervention strategies.
Resumo:
How much water we really need depends on water functions and the mechanisms of daily water balance regulation. The aim of this review is to describe the physiology of water balance and consequently to highlight the new recommendations with regard to water requirements. Water has numerous roles in the human body. It acts as a building material; as a solvent, reaction medium and reactant; as a carrier for nutrients and waste products; in thermoregulation; and as a lubricant and shock absorber. The regulation of water balance is very precise, as a loss of 1% of body water is usually compensated within 24 h. Both water intake and water losses are controlled to reach water balance. Minute changes in plasma osmolarity are the main factors that trigger these homeostatic mechanisms. Healthy adults regulate water balance with precision, but young infants and elderly people are at greater risk of dehydration. Dehydration can affect consciousness and can induce speech incoherence, extremity weakness, hypotonia of ocular globes, orthostatic hypotension and tachycardia. Human water requirements are not based on a minimal intake because it might lead to a water deficit due to numerous factors that modify water needs (climate, physical activity, diet and so on). Water needs are based on experimentally derived intake levels that are expected to meet the nutritional adequacy of a healthy population. The regulation of water balance is essential for the maintenance of health and life. On an average, a sedentary adult should drink 1.5 l of water per day, as water is the only liquid nutrient that is really essential for body hydration.
Resumo:
The essential oil (EO) of Ocimum gratissimum inhibited Staphylococcus aureus at a concentration of 0.75 mg/ml. The minimal inhibitory concentrations (MICs) for Shigella flexineri, Salmonella enteritidis, Escherichia coli, Klebsiella sp., and Proteus mirabilis were at concentrations ranging from 3 to 12 mg/ml. The endpoint was not reached for Pseudomonas aeruginosa (>=24 mg/ml). The MICs of the reference drugs used in this study were similar to those presented in other reports. The minimum bactericidal concentration of EO was within a twofold dilution of the MIC for this organism. The compound that showed antibacterial activity in the EO of O. gratissimum was identified as eugenol and structural findings were further supported by gas chromatography/mass spectra retention time data. The structure was supported by spectroscopic methods.
Resumo:
AIMS/HYPOTHESIS: Excess glucose transport to embryos during diabetic pregnancy causes congenital malformations. The early postimplantation embryo expresses the gene encoding the high-Km GLUT2 (also known as SLC2A2) glucose transporter. The hypothesis tested here is that high-Km glucose transport by GLUT2 causes malformations resulting from maternal hyperglycaemia during diabetic pregnancy. MATERIALS AND METHODS: Glut2 mRNA was assayed by RT-PCR. The Km of embryo glucose transport was determined by measuring 0.5-20 mmol/l 2-deoxy[3H]glucose transport. To test whether the GLUT2 transporter is required for neural tube defects resulting from maternal hyperglycaemia, Glut2+/- mice were crossed and transient hyperglycaemia was induced by glucose injection on day 7.5 of pregnancy. Embryos were recovered on day 10.5, and the incidence of neural tube defects in wild-type, Glut2+/- and Glut2-/- embryos was scored. RESULTS: Early postimplantation embryos expressed Glut2, and expression was unaffected by maternal diabetes. Moreover, glucose transport by these embryos showed Michaelis-Menten kinetics of 16.19 mmol/l, consistent with transport mediated by GLUT2. In pregnancies made hyperglycaemic on day 7.5, neural tube defects were significantly increased in wild-type embryos, but Glut2+/- embryos were partially protected from neural tube defects, and Glut2-/- embryos were completely protected from these defects. The frequency of occurrence of wild-type, Glut2+/- and Glut2-/- embryos suggests that the presence of Glut2 alleles confers a survival advantage in embryos before day 10.5. CONCLUSIONS/INTERPRETATIONS: High-Km glucose transport by the GLUT2 glucose transporter during organogenesis is responsible for the embryopathic effects of maternal diabetes.
Resumo:
In the light of emerging and overlooked infectious diseases and widespread drug resistance, diagnostics have become increasingly important in supporting surveillance, disease control and outbreak management programs. In many low-income countries the diagnostic service has been a neglected part of health care, often lacking quantity and quality or even non-existing at all. High-income countries have exploited few of their advanced technical abilities for the much-needed development of low-cost, rapid diagnostic tests to improve the accuracy of diagnosis and accelerate the start of appropriate treatment. As is now also recognized by World Healt Organization, investment in the development of affordable diagnostic tools is urgently needed to further our ability to control a variety of diseases that form a major threat to humanity. The Royal Tropical Institute's Department of Biomedical Research aims to contribute to the health of people living in the tropics. To this end, its multidisciplinary group of experts focuses on the diagnosis of diseases that are major health problems in low-income countries. In partnership we develop, improve and evaluate simple and cheap diagnostic tests, and perform epidemiological studies. Moreover, we advice and support others - especially those in developing countries - in their efforts to diagnose infectious diseases.
Resumo:
Projecte de recerca elaborat a partir d’una estada a l’Institut National de la Recherche Agronomique, França, entre 2007 i 2009. Saccharomyces cerevisiae ha estat el llevat utilitzat durant mil.lenis en l'elaboració de vins. Tot i així, es té poc coneixement sobre les pressions de selecció que han actuat en la modelització del genoma dels llevats vínics. S’ha seqüenciat el genoma d'una soca vínica comercial, EC1118, obtenint 31 supercontigs que cobreixen el 97% del genoma de la soca de referència, S288c. S’ha trobat que el genoma de la soca vínica es diferencia bàsicament en la possessió de 3 regions úniques que contenen 34 gens implicats en funcions claus per al procés fermentatiu. A banda, s’han dut a terme estudis de filogènia i synteny (ordre dels gens) que mostren que una d'aquestes tres regions és pròxima a una espècie relacionada amb el gènere Saccharomyces, mentre que les altres dos regions tenen un origen no-Saccharomyces. S’ha identificat mitjançant PCR i seqüenciació a Zygosaccharomyces bailii, una espècie contaminant de les fermentacions víniques, com a espècie donadora d'una de les dues regions. Les hibridacions naturals entre soques de diferents espècies dins del grup Saccharomyces sensu stricto ja han estat descrites. El treball és el primer que presenta hibridacions entre espècies Saccharomyces i no-Saccharomyces (Z. bailii, en aquest cas). També s’assenyala que les noves regions es troben freqüent i diferencialment presents entre els clades de S. cerevisiae, trobant-se de manera gairebé exclusiva en el grup de les soques víniques, suggerint que es tracta d'una adquisició recent de transferència gènica. En general, les dades demostren que el genoma de les soques víniques pateix una constant remodelació mitjançant l'adquisició de gens exògens. Els resultats suggereixen que aquests processos estan afavorits per la proximitat ecològica i estan implicats en l'adaptació molecular de les soques víniques a les condicions d'elevada concentració en sucres, poc nitrogen i elevades concentracions en etanol.
Resumo:
One of the characteristic features of the structure of the epithelial sodium channel family (ENaC) is the presence of two highly conserved cysteine-rich domains (CRD1 and CRD2) in the large extracellular loops of the proteins. We have studied the role of CRDs in the functional expression of rat alphabetagamma ENaC subunits by systematically mutating cysteine residues (singly or in combinations) into either serine or alanine. In the Xenopus oocyte expression system, mutations of two cysteines in CRD1 of alpha, beta, or gamma ENaC subunits led to a temperature-dependent inactivation of the channel. In CRD1, one of the cysteines of the rat alphaENaC subunit (Cys158) is homologous to Cys133 of the corresponding human subunit causing, when mutated to tyrosine (C133Y), pseudohypoaldosteronism type 1, a severe salt-loosing syndrome in neonates. In CRD2, mutation of two cysteines in alpha and beta but not in the gamma subunit also produced a temperature-dependent inactivation of the channel. The main features of the mutant cysteine channels are: (i) a decrease in cell surface expression of channel molecules that parallels the decrease in channel activity and (ii) a normal assembly or rate of degradation as assessed by nondenaturing co-immunoprecipitation of [35S]methionine-labeled channel protein. These data indicate that the two cysteines in CRD1 and CRD2 are not a prerequisite for subunit assembly and/or intrinsic channel activity. We propose that they play an essential role in the efficient transport of assembled channels to the plasma membrane.
Resumo:
α-glycerophosphate dehydrogenase (α-GPDH-EC.1.1.1.8) has been considered absent in Trypanosoma cruzi in contradiction with all other studied trypanosomatids. After observing that the sole malate dehydrogenase can not maintain the intraglycosomal redox balance, GPDH activity was looked for and found, although in very variable levels, in epimastigotes extracts. GPDH was shown to be exclusively located in the glycosome of T. cruzi by digitonin treatment and isopycnic centrifugation. Antibody against T. brucei GPDH showed that this enzyme seemed to be present in an essentially inactive form at the beginning of the epimastigotes growth. GPDH is apparently linked to a salicylhydroxmic-sensitive glycerophosphate reoxidizing system and plays an essential role in the glycosome redox balance.