970 resultados para Embryo sac development
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pregnancy establishment, followed by birth of live offspring, is essential to all mammals. The biological processes leading up to pregnancy establishment, maintenance, and birth are complex and dependent on the coordinated timing of a series of events at the molecular, cellular, and physiological level. The ability to ovulate a competent oocyte, which is capable of undergoing fertilization, is only the initial step in achieving a successful pregnancy. Once fertilization has occurred and early embryonic development is initiated, early pregnancy detection is critical to provide proper prenatal care (humans) or appropriate management (domestic livestock). However, the simple presence of an embryo, early in gestation, does not guarantee the birth of a live offspring. Pregnancy loss (embryonic mortality, spontaneous abortions, etc.) has been well documented in all mammals, especially in humans and domestic livestock species, and is a major cause of reproductive loss. It has been estimated that only about 25-30 % of all fertilized oocytes in humans result in birth of a live offspring; however, identifying the embryos that will not survive to parturition has not been an easy task. Therefore, investigators have focused the identification of products in maternal circulation that permit the detection of an embryo and assessment of its well-being. This review will focus on the advances in predicting embryonic presence and viability, in vivo.
Resumo:
In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study.
Incubation temperature manipulation during fetal development reduces adiposity of broiler hatchlings
Resumo:
Broilers are known as an efficient source of lean meat. Genetic selection resulted in broiler strains with large body size and fast growth, but a concomitant increase in fat deposition also occurred. Other than reducing nutrient intake, there is a lack of alternative methods to control body fat composition of broilers. The present study assessed whether incubation temperature (machine temperatures: 36ºC, 37.5ºC, and 39ºC; eggshell temperatures: 37.4 ± 0.08°C, 37.8 ± 0.15ºC, and 38.8 ± 0.33°C, respectively.) from d 13 affects broiler hatchling fat deposition. We analyzed adipocyte hypertrophy and proliferation in 3 body regions; weight and chemical composition of yolk-free chicks and yolk sacs; and serum lipid profile. Increased incubation temperature reduced abdominal and cervical adipocyte size. Independently of temperature, cervical adipocytes were smaller and showed higher proliferation than adipocytes in the abdominal and thigh regions. Smaller cervical adipocytes were observed in birds from eggs incubated at 36ºC and 39ºC. With regard to weight and composition of chicks, ash content as a percentage of dry matter was the only variable affected by temperature; it was higher in chicks from eggs incubated at 36ºC than at 39ºC and showed no significant difference between chicks incubated at 39ºC and 37.5ºC. Absolute and relative weights of yolk sacs were higher from eggs incubated at 39ºC than at 36ºC, and these two treatments did not differ from the 37.5ºC control. Absolute measures of yolk sac lipids, moisture, dry matter, and crude protein content were lower in chicks from eggs incubated at 36ºC, and no significant differences were found for these variables between chicks from eggs incubated at 37.5ºC and 39ºC. Hatchlings from eggs incubated at 36°C had significantly higher cholesterol levels than chicks incubated at the other 2 temperatures, but no additional effects on blood lipids were detected. Incubation temperature manipulation during fetal development altered cervical and abdominal adipocyte size in broiler hatchlings and could become a tool in hatcheries to manipulate chick quality, although further studies are needed to evaluate its long-term effects.
Resumo:
The objective of this study was to investigate the role of GnRH on the preimplantation development of mouse embryos in vitro. GnRH-I, GnRH-II, and GnRH agonists: Des-Gly, Des-Trp and histrelin did not improve embryo development. However, treatment with the specific GnRH antagonist SB-75 blocked embryo development at morula stage. The inhibition of embryo development by SB-75 could be rescued by the addition of histrelin. To determine which intracellular signaling cascade is involved following binding of GnRH to the GnRHR, embryos were cultured in the presence of specific PKC (GFX) or PKA (SQ22536) inhibitors. The PKC inhibitor blocked embryo development at a similar stage as SB-75, whereas SQ22536 had an inhibitory effect, diminishing blastocyst formation and hatched rates. There are evidences that GnRH has an essential autocrine effect on mouse embryonic development via GnRHR, probably by activating PKC signaling cascade while the inhibition of the GnRH signaling does not activate apoptotic mechanisms involving caspase-3. In another experiment, development in vitro of embryos from Chinese Meishan (M) and occidental white crossbred (WC) females were investigated after improving the vitrification protocol for pig embryos. Efficient cryopreservation of zona pellucida-intact porcine embryos and studies of the difference among breeds could greatly impact the swine industry. The percentage of embryos surviving 24 h after cryopreservation without lysis or degeneration was higher for M (72%) than WC (44%). However, in vitro development of embryos that survived cryopreservation was not different between M and WC at the expanded (64%) or hatched (22%) blastocyst stages. Developmental rates were significantly higher for control embryos than frozen embryos from both breeds at expanded blastocyst stage, but not at hatched blastocyst stage. Rates of expanded blastocyst formation did not differ between M and WC control embryos (98 and 95%, respectively). With a new procedure to warm vitrified pig embryos, the survival rates may be improved. The optimal stages to vitrify pig embryos using the microdroplet method ranges from late compact morula to early expanded blastocyst. The results suggest that M embryos have a higher capacity to survive the vitrification process than WC embryos. O objetivo do presente estudo foi investigar a importância do GnRH no desenvolvimento embrionário precoce em camundongos. GnRH-I, GnRH-II e os GnRH agonistas: Des-Gly, Des-Trp e histrelina não incrementaram o desenvolvimento embrionário. Entretanto, o tratamento com SB-75, um antagonista específico do GnRH, bloqueou o desenvolvimento embrionário no estádio de mórula. A inibição do desenvolvimento embrionário pelo SB-75 pôde ser revertida com a adição de histrelina. Para determinar a cascata do sinal intracelular desencadeada pela ligação do GnRH com o seu receptor, embriões foram cultivados na presença de inibidores específicos da PKC (GFX) e da PKA (SQ22536). O inibidor da PKC bloqueou o desenvolvimento embrionário em estádio similar ao bloqueio mediado pelo SB- 75, enquanto o SQ22536 teve efeito inibitório diminuindo a formação de blastocisto e taxas de eclosão. Os resultados sugerem que o GnRH tem um efeito autócrino essencial no desenvolvimento embrionário através do GnRHR, provavelmente, ativando a cascata da PKC. Por outro lado, a inibição do sinal do GnRH não ativa mecanismos apoptóticos que involvam caspase-3. Em outro experimento, foi investigado o desenvolvimento in vitro de embriões da raça Meishan (M) e branco cruzado (WC) após vitrificação pelo método microgota. O desenvolvimento de protocolos eficientes para criopreservação de embriões suínos com a zona pelúcida intacta e a avaliação das diferenças entre raças pode ter um significativo impacto na suinocultura. A percentagem de embriões que sobreviveram à criopreservação depois de 24 h foi maior na M (72%) do que na WC (44%). No entanto, o desenvolvimento in vitro dos embriões que sobreviveram à criopreservação não foi diferente entre M e WC nos estádios de blastocisto expandido (64%) ou eclodido (22%). Os índices de desenvolvimento foram significativamente mais altos para os embriões controle do que para os embriões vitrificados nas duas raças no estádio de blastocisto expandido, porém não foram diferentes para o estádio de blastocisto eclodido. A formação de blastocisto expandido não diferiu entre os embriões controle M e WC (98 e 95%, respectivamente). Com o novo procedimento (“hot warm”) para descongelar embriões vitrificados pelo método de microgota, pode-se aumentar dos índices de sobrevivência. Os melhores estádios embrionários para a vitrificação de embriões suínos variam de mórula compacta tardia até blastocisto expandido inicial. Os resultados sugerem que embriões M têm mais capacidade de sobreviver ao processo de vitrificação do que embriões WC.
Manipulation of follicle development to ensure optimal oocyte quality and conception rates in cattle
Resumo:
Over the last several decades, a number of therapies have been developed that manipulate ovarian follicle growth to improve oocyte quality and conception rates in cattle. Various strategies have been proposed to improve the responses to reproductive biotechnologies following timed artificial insemination (TAI), superovulation (SOV) or ovum pickup (OPU) programmes. During TAI protocols, final follicular growth and size of the ovulatory follicle are key factors that may significantly influence oocyte quality, ovulation, the uterine environment and consequently pregnancy outcomes. Progesterone concentrations during SOV protocols influence follicular growth, oocyte quality and embryo quality; therefore, several adjustments to SOV protocols have been proposed depending on the animal category and breed. In addition, the success of in vitro embryo production is directly related to the number and quality of cumulus oocyte complexes harvested by OPU. Control of follicle development has a significant impact on the OPU outcome. This article discusses a number of key points related to the manipulation of ovarian follicular growth to maximize oocyte quality and improve conception rates following TAI and embryo transfer of in vivo-and in vitro-derived embryos in cattle.
Resumo:
The evolutionary history of Hystricognathi is associated with major transformations in their placental system. Data so far indicate that key characters are independent from size dimensions in medium to very large species. To better understand the situation in smaller species, we analyzed placental development in a spiny rat, Thrichomys laurentinus. Fourteen individuals ranging from early implantation to near term were investigated by histology, immunohistochemistry, proliferation activity and electron microscopy. Placentation in Thrichomys revealed major parallels to the guinea pig and other hystricognath rodents with respect to the early and invasive implantation, the process of trophoblast invasion, the internal organization of the labyrinth and the trophospongium as well as the establishment of the complete inverted yolk sac placenta. In contrast to systematically related small-sized species, the placental regionalization in Thrichomys was characterized by a remarkable lobulated structure and associated growing processes. Reverse to former perspectives, these conditions represented ancient character states of hystricognaths. The subplacenta was temporarily supplied by both the maternal and fetal blood systems, a rare condition among hystricognaths. The extraplacental trophoblast originating from the subplacenta was partly proliferative in mid gestation. In conclusion, the presented results indicated that only minor variations occurred in small-sized hystricognath species, independent of their systematic interrelationships. Previous views were supported that placentation in hystricognaths followed an extraordinary stable pattern, although the group had distinct habitats in South America and Africa that were separated 30-40 million years ago. J. Exp. Zool. (Mol. Dev. Evol.) 318:13-25, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
A new species of Mesabolivar is described from Brazilian forests: Mesabolivar delclaroi. The mating behaviour, postembryonic development, number of egg sacs and eggs, birth rate, number of instars, developmental time until adulthood, sex ratio and size of cephalothorax (per instar) were recorded. The sexual behaviour was described and categorized into four steps: courtship, pre-copulation, copulation and post-copulation. After hatching, individuals presented five instars until maturity. The mean number of eggs (42 +/- 16.6) and live births (31.5 +/- 3.4) of the first egg sac were significantly greater than that of a second one (23.8 +/- 3.8, and 19.25 +/- 3.9, respectively). The developmental time from birth to adulthood (130.8 +/- 9.6 days) did not differ significantly between egg sacs produced (128.61 +/- 11.1). The size of the cephalothorax did not differ among adults or between sexes. The sex ratio revealed a shift in favour of females (4: 3).
Resumo:
Background: The in vitro production (IVP) of embryos by in vitro fertilization or cloning procedures has been known to cause epigenetic changes in the conceptus that in turn are associated with abnormalities in pre- and postnatal development. Handmade cloning (HMC) procedures and the culture of zona-free embryos in individual microwells provide excellent tools for studies in developmental biology, since embryo development and cell allocation patterns can be evaluated under a wide range of embryo reconstruction arrangements and in in vitro embryo culture conditions. As disturbances in embryonic cell allocation after in vitro embryo manipulations and unusual in vivo conditions during the first third of pregnancy appear to be associated with large offspring, embryo aggregation procedures may allow a compensation for epigenetic defects between aggregated embryos or even may influence more favorable cell allocation in embryonic lineages, favoring subsequent development. Thus, the aim of this study was to evaluate in vitro embryo developmental potential and the pattern of cell allocation in blastocysts developed after the aggregation of handmade cloned embryos produced using syngeneic wild type and/or transgenic somatic cells. Materials, Methods & Results: In vitro-matured bovine cumulus-oocyte complexes (COC) were manually bisected after cumulus and zona pellucida removal; then, two enucleated hemi-oocytes were paired and fused with either a wild type (WT) or a GFP-expressing (GFP) fetal skin cell at the 11th and 19th passages, respectively. Following chemical activation, reconstructed cloned embryos and zona-free parthenote embryos were in vitro-cultured in microwells, for 7 days, either individually (1 x 100%) or after the aggregation of two structures (2 x 100%) per microwell, as follows: (G1) one WT cloned embryo; (G2) two aggregated WT embryos; (G3) one GFP cloned embryo; (G4) two aggregated GFP embryos; (G5) aggregation of a WT embryo and a GFP embryo; (G6) one parthenote embryo; or (G7) two aggregated parthenote embryos. Fusion (clones), cleavage (Day 2), and blastocyst (Day 7) rates, and embryonic cell allocation were compared by the. 2 or Fisher tests. Total cell number (TCN) in blastocysts was analyzed by the Student's test (P < 0.05). Fusion and cleavage rates, and cell allocation were similar between groups. On a per WOW basis, development to the blastocyst stage was similar between groups, except for lower rates of development seen in G3. However, when based on number of embryos per group (one or two), blastocyst development was higher in G1 than all other groups, which were similar between one another. Cloned GFP embryos had lower in vitro development to the blastocyst stage than WT embryos, which had more TCN than parthenote or aggregated chimeric WT/GFP embryos. Aggregated GFP embryos had fewer cells than the other embryo groups. Discussion: The in vitro development of GFP cloned embryos was lower than WT embryos, with no effects on cell allocation in resulting blastocysts. Differences in blastocyst rate between groups were likely due to lower GFP-expressing cell viability, as GFP donor cells were at high population cell doublings when used for cloning. On a per embryo basis, embryo aggregation on Day 1 resulted in blastocyst development similar to non-aggregated embryos on Day 7, with no differences in cell proportion between groups. The use of GFP-expressing cells was proven a promising strategy for the study of cell allocation during embryo development, which may assist in the elucidation of mechanisms of abnormalities after in vitro embryo manipulations, leading to the development of improved protocols for the in vitro production (IVP) of bovine embryos.
Resumo:
The Dipteran a native Brazilian insect that has become a valuable model system for developmental biology research because it provides an interesting opportunity to study a different type of insect oogenesis. Sequences from a cDNA library that was constructed with poly A + RNA from the ovaries of larvae at different ages were analyzed. Molecular characterization confirmed interesting findings, such as the presence of . The gene encodes a conserved RNA-binding protein that is required during early development for the maintenance and division of the primordial germ cells of Diptera. plays an important role in specifying the posterior regions of insect embryos and is important for abdomen formation. In the present work, we showed the spatial and temporal expression profiles of this important gene, which is involved in oogenesis and early development. Data mining techniques were used to obtain the complete sequence of . Bioinformatic tools were used to determine the following: (1) the secondary structure of the 3'-untranslated region of the mRNA, (2) the encoded protein of the isolated gene, (3) the conserved zinc-finger domains of the Nanos protein, and (4) phylogenetic analyses. Furthermore, RNA in situ hybridization and immunolocalization were used to determine mRNA and protein expression in the tissues that were studied and to define as a germ cell molecular marker.
Resumo:
We studied the development of the inverted yolk sac in a New World rodent, Necromys lasiurus during early placentation. Ten implantation sites were investigated by means of histology, immunohistochemistry and electron microscopy. The yolk sac was villous near its attachment to the placenta. Elsewhere it was non-villous and closely attached to the uterus. The uterine glands were shallow and wide mouthed. They were associated with vessels and filled with secretion, suggesting the release of histotroph. This feature was absent at later stages. The intimate association of the yolk sac with specialized glandular regions of the uterus may represent a derived character condition of Necromys and/or sigmodont rodents. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background: Repulsive guidance molecules (RGM) are high-affinity ligands for the Netrin receptor Neogenin, and they are crucial for nervous system development including neural tube closure; neuronal and neural crest cell differentiation and axon guidance. Recent studies implicated RGM molecules in bone morphogenetic protein signaling, which regulates a variety of developmental processes. Moreover, a role for RGMc in iron metabolism has been established. This suggests that RGM molecules may play important roles in non-neural tissues. Results: To explore which tissues and processed may be regulated by RGM molecules, we systematically investigated the expression of RGMa and RGMb, the only RGM molecules currently known for avians, in the chicken embryo. Conclusions: Our study suggests so far unknown roles of RGM molecules in notochord, somite and skeletal muscle development. Developmental Dynamics, 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
The first cleavage divisions and preimplantation embryonic development are supported by mRNA and proteins synthesized and stored during oogenesis. Thus, mRNA molecules of maternal origin decrease and embryonic development becomes gradually dependent on expression of genetic information derived from the embryonic genome. However, it is still unclear what the role of the sperm cell is during this phase and whether the absence of the sperm cell during the artificial oocyte activation affects subsequent embryonic development. The objective of this study was to determine, in bovine embryos, changes in cell cycle-associated transcript levels (cyclin A, cyclin B, cyclin E, CDC2, CDK2, and CDK4) after oocyte activation in the presence or absence of the sperm cell. To evaluate that, in vitro-produced (IVP) and parthenogenetically activated (PA) embryos (2-4 cells (2-4C), 8-16 cells (8-16C) and blastocysts) were evaluated by real-time PCR. There was no difference in cleavage and blastocyst rates between IVP and PA groups. Transcript level was higher in oocytes than in IVP and PA embryos. Cleaved PA embryos showed higher expression of cyclin A, cyclin B, cyclin E, and CDK2 and lower expression of CDC2 when compared with that from the IVP group. At the time of activation, all transcripts were expressed less in PA than in IVP embryos, whereas at the blastocyst stage, almost all genes were expressed at a higher level in the PA group. These results suggest that in both groups there is an initial consumption of these transcripts in the early stages of embryonic development. Furthermore, 8-16C embryos seem to synthesize more cell cycle-related genes than 2-4C embryos. However, in PA embryos, activation of the cell cycle genes seems to occur after the 8- to 16-cell stage, suggesting a failure in the activation process.
Resumo:
In addition to the strong influence of the broodstock diet on the development and survival of offspring, domestication may also interfere with the larval life success. We obtained eggs from wild and domesticated Salminus hilarii females and domesticated males. Wild females were caught in the Tiete River and tributaries, and the domesticated females were born three years before the beginning of the experiment in the Ponte Nova Fish Farm. Animals from both groups were fed with the same feed to exclude feed variables. The eggs and larvae were sampled at 0, 8, 16, and 28 h after spawning (HAS), with the last sampling (28 HAS) coinciding with hatching time. After hatching, samplings proceeded at 32, 48, 66, and 96 HAS, with the last sampling (96 HAS) corresponding to the end of yolk sac consumption. Finally, the last experimental period was during the larvae exogenous feeding phase, at 102, 118, 166, and 214 HAS. Our data revealed that domestication of S. hilarii females influenced fatty acid (FA) metabolism during embryo and larva development. However, the structure of membrane phospholipid FA remained mostly stable, with changes principally in the neutral fraction. When the external conditions, mainly water and feed quality, remained constant, domestication of S. hilarii females did not significantly affect the structural FA composition but influenced the selectivity of consumption and/or storage of specific FA.
Resumo:
The presence of heparin and a mixture of penicillamine, hypotaurine, and epinephrine (PHE) solution in the in vitro fertilization (IVF) media seem to be a prerequisite when bovine spermatozoa are capacitated in vitro, in order to stimulate sperm motility and acrosome reaction. The present study was designed to determine the effect of the addition of heparin and PHE during IVF on the quality and penetrability of spermatozoa into bovine oocytes and on subsequent embryo development. Sperm quality, evaluated by the integrity of plasma and acrosomal membranes and mitochondrial function, was diminished (P<0.05) in the presence of heparin and PHE. Oocyte penetration and normal pronuclear formation rates, as well as the percentage of zygotes presenting more than two pronuclei, was higher (P<0.05) in the presence of heparin and PHE. No differences were observed in cleavage rates between treatment and control (P>0.05). However, the developmental rate to the blastocyst stage was increased in the presence of heparin and PHE (P>0.05). The quality of embryos that reached the blastocyst stage was evaluated by counting the inner cell mass (ICM) and trophectoderm (TE) cell numbers and total number of cells; the percentage of ICM and TE cells was unaffected (P>0.05) in the presence of heparin and PHE (P<0.05). In conclusion, this study demonstrated that while the supplementation of IVF media with heparin and PHE solution impairs spermatozoa quality, it plays an important role in sperm capacitation, improving pronuclear formation, and early embryonic development