923 resultados para Electron energy loss spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of ceramic materials is constantly evolving, especially in research related to advanced ceramics. Once these have many applications, this paper relates to synthesis by solid state reaction of calcium copper titanate (CCTO) ceramic material means doping with strontium. The powders were characterized using thermal analysis techniques such as TG (thermogravimetry), DTA (differencial thermal analysis), dilatometry, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The compositions have submitted weight loss at around 6% with respect to carbonates used, and was attributed a temperature of 950° C to perform the calcination according to thermogravimetric analysis. After the process of calcination and milling, the particles presented approximately spherical shapes and high percentages of substitution Ca2+ with Sr2+ was evident by the presence of necks between to particles due to the milling calcination. Analyses with Energy Dispersive Spectroscopy (EDS) showed stoichiometries in different samples very similar to the theoretical stoichiometry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The composite SmBa2Cu3O7-delta (Sm-123), obtained by the substitution of the ion Y for Sm in the very well known and studied YBa2Cu3O7-delta (Y-123), is potentially attractive for better understanding superconductivity mechanisms and for its applications as electronic devices. Sm-123 samples show higher critical temperatures than Y-123 ones do and a larger solubility of Sm in Ba-Cu-O solvent, which makes their growth process faster. When oxygen is present interstitially, it strongly affects the physical properties of the material. The dynamics of oxygen can be investigated by anelastic spectroscopy measurements, a powerful technique for the precise determination of the oscillation frequency and the internal friction when atomic jumps are possible. Anelastic spectroscopy allows determining the elasticity modulus (related to the oscillation frequency) and the elastic energy loss (related to the internal friction) as a function of the temperature. The sample was also investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), and electric resistivity. The results obtained show a thermally activated relaxation structure composed by at least 3 relaxation processes. These processes may be attributed to the jumps of oxygen atoms present of the Cu-O plane in the orthorhombic phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many researchers became interested in the discovery of Bi(2)Sr(2)CaCu(2)O(8+delta) oxides with critical temperature of around 80 K. It is known that the critical temperature is related to the CuO2 planes of the material. For this reason, the study of the interstitial oxygen in these oxides is of great relevance. The samples were prepared by means of conventional solid state reactions, through the stoichiometric mixture of precursory powders. After the sinterization, the samples were submitted to measurements of density, electrical resistivity, x-ray diffraction, scanning electron microscopy and energy dispersion spectroscopy, with the objective of performing their characterization. The measurements of mechanical spectroscopy were performed by a torsion pendulum. The results show three relaxation processes in the temperature range of 200 and 700 K, with activation energy of approximately 0.9 eV, which has been attributed to the dynamics of the interstitial oxygen present in the material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim To compare the changes in the surface structure and elemental distribution, as well as the percentage of ion release, of four calcium silicate-containing endodontic materials with a well-established epoxy resin-based sealer, submitted to a solubility test. Methodology Solubility of AH Plus, iRoot SP, MTA Fillapex, Sealapex and MTA-Angelus (MTA-A) was tested according to ANSI/ADA Specification 57. The deionized water used in the solubility test was submitted to atomic absorption spectrophotometry to determine and quantify Ca2+, Na+, K+, Zn2+, Ni2+ and Pb2+ ions release. In addition, the outer and inner surfaces of nonsubmitted and submitted samples of each material to the solubility test were analysed by means of scanning electron microscopy and energy-dispersive spectroscopy (SEM/EDX). Statistical analysis was performed by using one-way anova and Tukeys post hoc tests (a = 0.05). Results Solubility results, in percentage, sorted in an increasing order were -1.24 +/- 0.19 (MTA-A), 0.28 +/- 0.08 (AH Plus), 5.65 +/- 0.80 (Sealapex), 14.89 +/- 0.73 (MTA Fillapex) and 20.64 +/- 1.42 (iRoot SP). AH Plus and MTA-A were statistically similar (P > 0.05), but different from the other materials (P < 0.05). High levels of Ca2+ ion release were observed in all groups except AH Plus sealer. MTA-A also had the highest release of Na2+ and K+ ions. Zn+2 ion release was observed only with AH Plus and Sealapex sealers. After the solubility test, all surfaces had morphological changes. The loss of matrix was evident and the filler particles were more distinguishable. EDX analysis displayed high levels of calcium and carbon at the surface of Sealapex, MTA Fillapex and iRoot SP. Conclusions AH Plus and MTA-A were in accordance with ANSI/ADAs requirements regarding solubility whilst iRoot SP, MTA Fillapex and Sealapex did not fulfil ANSI/ADAs protocols. High levels of Ca2+ ion release were observed in all materials except AH Plus. SEM/EDX analysis revealed that all samples had morphological changes in both outer and inner surfaces after the solubility test. High levels of calcium and carbon were also observed at the surface of all materials except AH Plus and MTA-A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Outdoor bronzes exposed to the environment form naturally a layer called patina, which may be able to protect the metallic substrate. However, since the last century, with the appearance of acid rains, a strong change in the nature and properties of the copper based patinas occurred [1]. Studies and general observations have established that bronze corrosion patinas created by acid rain are not only disfiguring in terms of loss of detail and homogeneity, but are also unstable [2]. The unstable patina is partially leached away by rainwater. This leaching is represented by green streaking on bronze monuments [3]. Because of the instability of the patina, conservation techniques are usually required. On a bronze object exposed to the outdoor environment, there are different actions of the rainfall and other atmospheric agents as a function of the monument shape. In fact, we recognize sheltered and unsheltered areas as regards exposure to rainwater [4]. As a consequence of these different actions, two main patina types are formed on monuments exposed to the outdoor environment. These patinas have different electrochemical, morphological and compositional characteristics [1]. In the case of sheltered areas, the patina contains mainly copper products, stratified above a layer strongly enriched in insoluble Sn oxides, located at the interface with the uncorroded metal. Moreover, different colors of the patina result from the exposure geometry. The surface color may be pale green for unsheltered areas, and green and mat black for sheltered areas [4]. Thus, in real outdoor bronze monuments, the corrosion behavior is strongly influenced by the exposure geometry. This must be taken into account when designing conservation procedures, since the patina is in most cases the support on which corrosion inhibitors are applied. Presently, for protecting outdoor bronzes against atmospheric corrosion, inhibitors and protective treatments are used. BTA and its derivatives, which are the most common inhibitors used for copper and its alloy, were found to be toxic for the environment and human health [5, 6]. Moreover, it has been demonstrated that BTA is efficient when applied on bare copper but not as efficient when applied on bare bronze [7]. Thus it was necessary to find alternative compounds. Silane-based inhibitors (already successfully tested on copper and other metallic substrates [8]), were taken into consideration as a non-toxic, environmentally friendly alternative to BTA derivatives for bronze protection. The purpose of this thesis was based on the assessment of the efficiency of a selected compound, to protect the bronze against corrosion, which is the 3-mercapto-propyl-trimethoxy-silane (PropS-SH). It was selected thanks to the collaboration with the Corrosion Studies Centre “Aldo Daccò” at the Università di Ferrara. Since previous studies [9, 10, 11] demonstrated that the addition of nanoparticles to silane-based inhibitors leads to an increase of the protective efficiency, we also wanted to evaluate the influence of the addition of CeO2, La2O3, TiO2 nanoparticles on the protective efficiency of 3-mercapto-propyl-trimethoxy-silane, applied on pre-patinated bronze surfaces. This study is the first section of the thesis. Since restorers have to work on patinated bronzes and not on bare metal (except for contemporary art), it is important to be able to recreate the patina, under laboratory conditions, either in sheltered or unsheltered conditions to test the coating and to obtain reliable results. Therefore, at the University of Bologna, different devices have been designed to simulate the real outdoor conditions and to create a patina which is representative of real application conditions of inhibitor or protective treatments. In particular, accelerated ageing devices by wet & dry (simulating the action of stagnant rain in sheltered areas [12]) and by dropping (simulating the leaching action of the rain in unsheltered areas [1]) tests were used. In the present work, we used the dropping test as a method to produce pre-patinated bronze surfaces for the application of a candidate inhibitor as well as for evaluating its protective efficiency on aged bronze (unsheltered areas). In this thesis, gilded bronzes were also studied. When they are exposed to the outside environment, a corrosion phenomenon appears which is due to the electrochemical couple gold/copper where copper is the anode. In the presence of an electrolyte, this phenomenon results in the formation of corrosion products than will cause a blistering of the gold (or a break-up and loss of the film in some cases). Moreover, because of the diffusion of the copper salts to the surface, aggregates and a greenish film will be formed on the surface of the sample [13]. By coating gilded samples with PropS-SH and PropS-SH containing nano-particles and carrying out accelerated ageing by the dropping test, a discussion is possible on the effectiveness of this coating, either with nano-particles or not, against the corrosion process. This part is the section 2 of this thesis. Finally, a discussion about laser treatment aiming at the assessment of reversibility/re-applicability of the PropS-SH coating can be found in section 3 of this thesis. Because the protective layer loses its efficiency with time, it is necessary to find a way of removing the silane layer, before applying a new one on the “bare” patina. One request is to minimize the damages that a laser treatment would create on the patina. Therefore, different laser fluences (energy/surface) were applied on the sample surface during the treatment process in order to find the best range of fluence. In particular, we made a characterization of surfaces before and after removal of PropS-SH (applied on a naturally patinated surface, and subsequently aged by natural exposure) with laser methods. The laser removal treatment was done by the CNR Institute of Applied Physics “Nello Carrara” of Sesto Fiorentino in Florence. In all the three sections of the thesis, a range of non-destructive spectroscopic methods (Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), μ-Raman spectroscopy, X-Ray diffractometry (XRD)) were used for characterizing the corroded surfaces. AAS (Atomic Absorption Spectroscopy) was used to analyze the ageing solutions from the dropping test in sections 1 and 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der Haupt-Lichtsammelkomplex (LHCII) des Photosyntheseapparates höherer Pflanzen gehört zu den häufigsten Membranproteinen der Erde. Seine Kristallstruktur ist bekannt. Das Apoprotein kann rekombinant in Escherichia coli überexprimiert und somit molekularbiologisch vielfältig verändert werden. In Detergenzlösung besitzt das denaturierte Protein die erstaunliche Fähigkeit, sich spontan zu funktionalen Protein-Pigment-Komplexen zu organisieren, welche strukturell nahezu identisch sind mit nativem LHCII. Der Faltungsprozess findet in vitro im Zeitbereich von Sekunden bis Minuten statt und ist abhängig von der Bindung der Cofaktoren Chlorophyll a und b sowie verschiedenen Carotinoiden.rn Diese Eigenschaften machen LHCII besonders geeignet für Strukturuntersuchungen mittels der elektronenparamagnetischen Resonanz (EPR)-Spektrokopie. Diese setzt eine punktspezifische Spinmarkierung des LHCII voraus, die in dieser Arbeit zunächst optimiert wurde. Einschließlich der Beiträge Anderer stand eine breite Auswahl von über 40 spinmarkierten Mutanten des LHCII bereit, einen N-terminalen „Cys walk“ eingeschlossen. Weder der hierfür notwendige Austausch einzelner Aminosäuren noch die Anknüpfung des Spinmarkers beeinträchtigten die Funktion des LHCII. Zudem konnte ein Protokoll zur Präparation heterogen spinmarkierter LHCII-Trimere entwickelt werden, also von Trimeren, die jeweils nur ein Monomer mit einer Spinmarkierung enthalten.rn Spinmarkierte Proben des Detergenz-solubilisierten LHCII wurden unter Verwendung verschiedener EPR-Techniken strukturell analysiert. Als besonders aussagekräftig erwies sich die Messung der Wasserzugänglichkeit einzelner Aminosäurepositionen anhand der Electron Spin Echo Envelope Modulation (ESEEM). In Kombination mit der etablierten Double Electron-Electron Resonance (DEER)-Technik zur Detektion von Abständen zwischen zwei Spinmarkern wurde der membranständige Kernbereich des LHCII in Lösung eingehend untersucht und strukturell der Kristallstruktur für sehr ähnlich befunden. Die Vermessung kristallographisch nicht erfasster Bereiche nahe dem N-Terminus offenbarte die schon früher detektierte Strukturdynamik der Domäne in Abhängigkeit des Oligomerisierungsgrades. Der neue, noch zu vervollständigende Datensatz aus Abstandsverteilungen und ESEEM-Wasserzugänglichkeiten monomerer wie trimerer Proben sollte in naher Zukunft die sehr genaue Modellierung der N-terminalen Domäne des LHCII ermöglichen.rn In einem weiteren Abschnitt der Arbeit wurde die Faltung des LHCII-Apoproteins bei der LHCII-Assemblierung in vitro untersucht. Vorausgegangene fluoreszenzspektroskopi-sche Arbeiten hatten gezeigt, dass die Bindung von Chlorophyll a und b in aufeinanderfolgenden Schritten im Zeitbereich von weniger als einer Minute bzw. mehreren Minuten erfolgten. Sowohl die Wasserzugänglichkeit einzelner Aminosäurepositionen als auch Spin-Spin-Abstände änderten sich in ähnlichen Zeitbereichen. Die Daten deuten darauf hin, dass die Ausbildung der mittleren Transmembran-Helix mit der schnelleren Chlorophyll-a-Bindung einhergeht, während sich die Superhelix aus den beiden anderen Transmembranhelices erst im langsameren Schritt, zusammen mit der Chlorophyll-b-Bindung, ausbildet.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation for 4 and 6 MeV electron beams of Varian linear accelerators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The late Miocene to early Pliocene carbonate-rich sediments recovered at Integrated Ocean Drilling Program (IODP) Site U1338 during the Expedition 320/321 Pacific Equatorial Age Transect (PEAT) program contain abundant calcareous nanno- and microfossils. Geochemical proxies from benthic and planktonic foraminiferal and coccolithophore calcite could be very useful at this location; however, good preservation of the calcite is crucial for the proxies to be robust. Here, we evaluate the preservation of specific benthic and planktonic foraminifer species and coccolithophores in fine fraction sediment at Site U1338 using backscattered electron (topography mode) scanning electron microscopy (BSE-TOPO SEM). Both investigated foraminiferal species, Cibicidoides mundulus and Globigerinoides sacculifer, have undergone some alteration. The C. mundulus show minor evidence for dissolution, and only some specimens show evidence of overgrowth. The Gs. sacculifer show definite signs of alteration and exhibit variable preservation, ranging from fair to poor; some specimens show minor overgrowth and internal recrystallization but retain original features such as pores, spine pits, and internal test-wall growth structure, whereas in other specimens the recrystallization and overgrowth disguise many of the original features. Secondary electron and BSE-TOPO SEM images show that coccolith calcite preservation is moderate or moderate to poor. Slight to moderate etching has removed central heterococcolith features, and a small amount of secondary overgrowth is also visible. Energy dispersive spectroscopy analyses indicate that the main sedimentary components of the fine fraction sediment are biogenic CaCO3 and SiO2, with some marine barite. Based on the investigations in this data report, geochemical analyses on benthic foraminifers are unlikely to be affected by preservation, although geochemical analyses on the planktonic foraminifers should be treated cautiously because of the fair to poor and highly variable preservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With various low-temperature experiments performed on magnetic mineral extracts of marine sedimentary deposits from the Argentine continental slope near the Rio de la Plata estuary, a so far unreported style of partial magnetic self-reversal has been detected. In these sediments the sulphate-methane transition (SMT) zone is situated at depths between 4 and 8 m, where reductive diagenesis severely alters the magnetic mineral assemblage. Throughout the sediment column magnetite and ilmenite are present together with titanomagnetite and titanohematite of varying compositions. In the SMT zone (titano-)magnetite only occurs as inclusions in a siliceous matrix and as intergrowths with lamellar ilmenite and titanium-rich titanohematite, originating from high temperature deuteric oxidation within the volcanic host rocks. These abundant structures were visualized by scanning electron microscopy and analysed by energy dispersive spectroscopy. Warming of field-cooled and zero-field-cooled low-temperature saturation remanence displays magnetic phase transitions of titanium-rich titanohematite below 50 K and the Verwey transition of magnetite. A prominent irreversible decline characterizes zero-field cooling of room temperature saturation remanence. It typically sets out at ~210 K and is most clearly developed in the lower part of the SMT zone, where low-temperature hysteresis measurements identified ~210 K as the blocking temperature range of a titanohematite phase with a Curie temperature of around 240 K. The mechanism responsible for the marked loss of remanence is, therefore, sought in partial magnetic self-reversal by magnetostatic interaction of (titano-)magnetite and titanohematite. When titanohematite becomes ferrimagnetic upon cooling, its spontaneous magnetic moments order antiparallel to the (titano-)magnetite remanence causing an drastic initial decrease of global magnetization. The loss of remanence during subsequent further cooling appears to result from two combined effects (1) magnetic interaction between the two phases by which the (titano-)magnetite domain structure is substantially modified and (2) low-temperature demagnetization of (titano-)magnetite due to decreasing magnetocrystalline anisotropy. The depletion of titanomagnetite and superior preservation of titanohematite is characteristic for strongly reducing sedimentary environments. Typical residuals of magnetic mineral assemblages derived from basaltic volcanics will be intergrowths of titanohematite lamellae with titanomagnetite relics. Low-temperature remanence cycling is, therefore, proposed as a diagnostic method to magnetically characterize such alteration (palaeo-)environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A utilização de substitutos ósseos para recuperação da função perdida é uma constante busca dentro da área médica. Por isso os biomateriais têm recebido uma atenção muito grande por parte da comunidade científica, dentre eles os materiais a base de fosfato de cálcio. A hidroxiapatita, Ca10 (PO4)6 (OH) 2, tem sido muito estudada, pois além de representar a constituição da massa dos ossos naturais e dentes em 30 a 70%, possui propriedades de bioatividade e osteocondutividade, favorecendo e auxiliando o crescimento do tecido ósseo. Em contrapartida, infecções bacterianas podem surgir após o implante ocasionando a perda da funcionalidade a curto e médio prazo. Várias alternativas estão sendo testadas, geralmente associadas ao uso de antibióticos convencionais incorporados aos biomateriais. Uma alternativa a tais antibióticos seria a utilização de metais que possuem propriedades antibacterianas. A prata (Ag) é conhecida como um metal bactericida e por isso ganhou lugar de destaque dentre os estudos como um aliado importante no controle das infecções pós-cirúrgicas. Este trabalho teve como objetivo sintetizar, caracterizar e avaliar o efeito antimicrobiano da adição de íons de prata em hidroxiapatita. Foram obtidos pós de hidroxiapatita contendo prata (HAAg), nas concentrações de 0,1M; 0,01M e 0,001M pelo método de precipitação em temperatura ambiente e por imersão do pó de hidroxiapatita em soluções aquosas. As fases cristalinas e os grupamentos iônicos foram analisados para cada condição por técnicas de difração de raios X (DRX) e espectroscopia no infravermelho (IV) respectivamente. As informações sobre a morfologia e identificação de elementos químicos foi realizado pela técnica de microscopia eletrônica de varredura com espectroscopia de energia dispersiva (MEV EDS). As avaliações antimicrobianas foram realizadas por ensaios qualitativos e quantitativos, o ensaio qualitativo utilizou o teste de halo de difusão em disco para Staphylococcus aureus e Escherichia coli e o ensaio quantitativo utilizou contagem de bactérias para as cepas de Staphylococcus aureus. Os resultados de DRX e IV indicaram que independentemente do método de obtenção da HAAg foi possível observar a presença de prata metálica caracterizada pelos picos em 2θ=38,1º e 44,3º nas amostras HAAg0,1Im, HAAg0,1Pr e HAAg0,01Pr. Observou-se também a presença de AgO, correspondente ao pico em 2θ=37,5º nas amostras de HAAg0,01Pr e HAAg0,001Pr. Nos espectros de IV estão presentes as bandas que caracterizam a fase HA, referentes aos grupamentos PO43-, OH- e CO32-. Analisados em conjunto os ensaios qualitativos e quantitativos, as amostras HAAg0,01Im e HAAg0,001Im sintetizadas por imersão indicaram os melhores resultados para o ensaio de disco difusão, por apresentarem formação de halo inibição do crescimento bacteriano para a bactéria S. aureus. Para os ensaios quantitativos as amostras obtidas por precipitação com concentrações 0,1M e 0,01M de prata apresentaram melhor resultado por inibirem o crescimento bacteriano para as cepas S. aureus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O mercado atual exige das indústrias siderúrgicas aços de melhor qualidade produzidos por meio de processos que causem menor impacto ao meio ambiente. Dessa forma, este trabalho teve como objetivo reciclar o resíduo de mármore gerado na indústria de rochas ornamentais, que possui em sua composição óxido de cálcio (CaO) e óxido de magnésio (MgO). O CaO é suficiente para substituir a cal nas escórias e o MgO contribui para a diminuição do desgaste dos refratários, através do emprego do resíduo no processo produtivo do aço. Além disso, foi realizada a substituição da fluorita por óxido de boro como fluxante na composição de misturas dessulfurantes. O resíduo de mármore foi caracterizado utilizando as seguintes técnicas: análise química via EDXFR, análise granulométrica via espalhamento de luz, área de superfície específica pelo método BET, difração de raios-X, microscopia eletrônica de varredura (MEV) e análise de micro-regiões por EDS. Visando verificar a eficiência na dessulfuração, foram formuladas misturas sintéticas utilizando a cal convencional ou resíduo de mármore, e a fluorita ou o óxido de boro. As misturas foram formuladas com o auxílio dos programas de termodinâmica computacional, Thermo-Calc e FactSage. Estas misturas foram adicionadas no aço fundido a temperatura de 1600°C sob atmosfera de argônio e agitadas por meio de um rotor de alumina. Amostras de metal foram retiradas para verificar a variação do teor de enxofre durante o experimento. O resíduo de mármore caracterizado, apresentou em sua composição 40% de CaO e 14% de MgO, na forma dos carbonatos CaCO3 e MgCO3. Obteve uma perda de massa de 42,1%, na forma de CO2 a temperatura de 780°C. Os experimentos mostraram que, as misturas testadas apresentaram, na maioria dos casos, eficiência de dessulfuração acima de 60%.