877 resultados para Electrical power system stability
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Na presente tese propõe-se uma metodologia de ajuste ótimo dos controladores do conversor interligado ao rotor de aerogeradores de indução duplamente excitados (DFIG), utilizando algoritmos genéticos (AG), com o objetivo de melhorar a segurança e a robustez do sistema elétrico de potência, permitindo que os aerogeradores DFIG participem da gestão técnica do sistema. Para garantir este objetivo, é utilizada uma estratégia de proteção do tipo “crow-bar” durante a falta, mantendo o conversor interligado ao rotor conectado à máquina. Imediatamente após a eliminação da falta, o “crow-bar” é desativado, e simultaneamente os controladores ótimos do conversor interligado ao rotor são acionados, previamente ajustados pelo AG, a fim de melhorar a capacidade de sobrevivência a afundamentos de tensão “ridethrough capability” e a margem de estabilidade global do sistema elétrico. Para validação da metodologia ótima desenvolvida foram realizadas simulações computacionais utilizando uma rede elétrica real, em três condições operacionais distintas.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
This paper describes a methodology for solving a linear system of equations on vector computer. The methodology combines direct and inverse factors. The decomposition and implementation of the direct solution in a CRAY Y-MPZE/232, and the performance results are discussed.
Resumo:
The electrical power source is a critical component of the scoping level study as the source affects both the project economics and timeline. This paper proposes a systematic approach to selecting an electrical power source for a new mine. Orvana Minerals Copperwood project is used as a case study. The Copperwood results show that the proposed scoping level approach is consistent with the subsequent much more detailed feasibility study.
DIMENSION REDUCTION FOR POWER SYSTEM MODELING USING PCA METHODS CONSIDERING INCOMPLETE DATA READINGS
Resumo:
Principal Component Analysis (PCA) is a popular method for dimension reduction that can be used in many fields including data compression, image processing, exploratory data analysis, etc. However, traditional PCA method has several drawbacks, since the traditional PCA method is not efficient for dealing with high dimensional data and cannot be effectively applied to compute accurate enough principal components when handling relatively large portion of missing data. In this report, we propose to use EM-PCA method for dimension reduction of power system measurement with missing data, and provide a comparative study of traditional PCA and EM-PCA methods. Our extensive experimental results show that EM-PCA method is more effective and more accurate for dimension reduction of power system measurement data than traditional PCA method when dealing with large portion of missing data set.
Resumo:
This paper analyzes the correlation between the fluctuations of the electrical power generated by the ensemble of 70 DC/AC inverters from a 45.6 MW PV plant. The use of real electrical power time series from a large collection of photovoltaic inverters of a same plant is an impor- tant contribution in the context of models built upon simplified assumptions to overcome the absence of such data. This data set is divided into three different fluctuation categories with a clustering proce- dure which performs correctly with the clearness index and the wavelet variances. Afterwards, the time dependent correlation between the electrical power time series of the inverters is esti- mated with the wavelet transform. The wavelet correlation depends on the distance between the inverters, the wavelet time scales and the daily fluctuation level. Correlation values for time scales below one minute are low without dependence on the daily fluctuation level. For time scales above 20 minutes, positive high correlation values are obtained, and the decay rate with the distance depends on the daily fluctuation level. At intermediate time scales the correlation depends strongly on the daily fluctuation level. The proposed methods have been implemented using free software. Source code is available as supplementary material.
Resumo:
Renewable energy sources are believed to reduce drastically greenhouse gas emissions that would otherwise be generated from fossil fuels used to generate electricity. This implies that a unit of renewable energy will replace a unit of fossil-fuel, with its CO2 emissions, on an equivalent basis (with no other effects on the grid). But, the fuel economy and emissions in the existing power systems are not proportional with the electricity production of intermittent sources due to cycling of the fossil fuel plants that make up the balance of the grid (i.e. changing the power output makes thermal units to operate less efficiently). This study focuses in the interactions between wind generation and thermal plants cycling, by establishing the levels of extra fuel use caused by decreased efficiencies of fossil back-up for wind electricity in Spain. We analyze the production of all thermal plants in 2011, studying different scenarios where wind penetration causes major deviations in programming, while we define a procedure for quantifying the carbon reductions by using emission factors and efficiency curves from the existing installations. The objectives are to discuss the real contributions of renewable energies to the environmental targets as well as suggest alternatives that would improve the reliability of future power systems.
Resumo:
Sterile coal is a low-value residue associated to the coal extraction and mining activity. According to the type and origin of the coal bed configuration, sterile coal production can mainly vary on quantity, calorific value and presence of sulphur compounds. In addition, the potential availability of sterile coal within Spain is apparently high and its contribution to the local power generation would be of interest playing a significant role. The proposed study evaluates the availability and deployment of gasification technologies to drive clean electricity generation from waste coal and sterile rock coal, incorporating greenhouse gas emission mitigation systems, like CO2, H2S and NOx removal systems. It establishes the target facility and its conceptual basic design proposal. The syngas obtained after the gasification of sterile coal is processed through specific conditioning units before entering into the combustion chamber of a gas turbine. Flue gas leaving the gas turbine is ducted to a heat recovery steam generation boiler; the steam produced within the boilerdrives a steam turbine. The target facility resembles a singular Integrated Gasification in Combined Cycle (IGCC) power station. The evaluation of the conceptual basic design according to the power output set for a maximum sterile contribution, established that rates over 95% H2S and 90% CO2 removal can be achieved. Noticeable decrease of NOx compounds can be also achieved by the use of commercial technology. A techno-economic approach of the conceptual basic design is made evaluating the integration of potential unitsand their implementation within the target facility aiming toachieve clean power generation. The criterion to be compliant with the most restrictive regulation regarding environmental emissions is setting to carry out this analysis.
Resumo:
This report analyzes the basis of hydrogen and power integration strategies, by using water electrolysis processes as a means of flexible energy storage at large scales.
Resumo:
Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.