924 resultados para EXPERT-SYSTEM
Resumo:
Food bought at supermarkets in, for instance, North America or the European Union, give comprehensive information about ingredients and allergens. Meanwhile, the menus of restaurants are usually incomplete and cannot be normally completed by the waiter. This is specially important when traveling to countries with a di erent culture. A curious example is "calamares en su tinta" (squid in its own ink), a common dish in Spain. Its brief description would be "squid with boiled rice in its own (black) ink", but an ingredient of its sauce is flour, a fact very important for celiacs. There are constraints based on religious believes, due to food allergies or to illnesses, while others just derive from personal preferences. Another complicated situation arise in hospitals, where the doctors' nutritional recommendations have to be added to the patient's usual constraints. We have therefore designed and developed a Rule Based Expert System (RBES) that can address these problems. The rules derive directly from the recipes of the di fferent dishes and contain the information about the required ingredients and ways of cooking. In fact, we distinguish: ingredients and ways of cooking, intermediate products (like sauces, that aren't always made explicit) and final products (the dishes listed in the menu of the restaurant). For a certain restaurant, customer and instant, the input to the RBES are: actualized stock of ingredients and personal characteristics of that customer. The RBES then prepares a "personalized menu" using set operations and knowledge extraction (thanks to an algebraic inference engine [1]). The RBES has been implemented in the computer algebra system MapleTM2015. A rst version of this work was presented at "Applications of Computer Algebra 2015" (ACA'2015) conference. The corresponding abstract is available at [2].
Resumo:
In the medical field images obtained from high definition cameras and other medical imaging systems are an integral part of medical diagnosis. The analysis of these images are usually performed by the physicians who sometimes need to spend long hours reviewing the images before they are able to come up with a diagnosis and then decide on the course of action. In this dissertation we present a framework for a computer-aided analysis of medical imagery via the use of an expert system. While this problem has been discussed before, we will consider a system based on mobile devices. Since the release of the iPhone on April 2003, the popularity of mobile devices has increased rapidly and our lives have become more reliant on them. This popularity and the ease of development of mobile applications has now made it possible to perform on these devices many of the image analyses that previously required a personal computer. All of this has opened the door to a whole new set of possibilities and freed the physicians from their reliance on their desktop machines. The approach proposed in this dissertation aims to capitalize on these new found opportunities by providing a framework for analysis of medical images that physicians can utilize from their mobile devices thus remove their reliance on desktop computers. We also provide an expert system to aid in the analysis and advice on the selection of medical procedure. Finally, we also allow for other mobile applications to be developed by providing a generic mobile application development framework that allows for access of other applications into the mobile domain. In this dissertation we outline our work leading towards development of the proposed methodology and the remaining work needed to find a solution to the problem. In order to make this difficult problem tractable, we divide the problem into three parts: the development user interface modeling language and tooling, the creation of a game development modeling language and tooling, and the development of a generic mobile application framework. In order to make this problem more manageable, we will narrow down the initial scope to the hair transplant, and glaucoma domains.
Resumo:
Introducción: El dolor lumbar y los desórdenes músculo esqueléticos comprometen la salud y la calidad de vida de los trabajadores, pueden poner en riesgo el futuro laboral de las personas. bjetivo: Estimar la prevalencia de dolor lumbar y los posibles factores biomecánicos asociados en el personal operativo y administrativo en una empresa manufacturera de jabón en Bogotá, en el año 2016 Metodología: Estudio de corte transversal donde se evaluó el riesgo biomecánico y la prevalencia del dolor lumbar en personal administrativo (138) y operativo (165); se utilizó como instrumento el ERGOPAR validado en España. Se revisó la asociación utilizando la prueba Chi Cuadrado de Pearson, con un nivel de significación α 0.05 Resultados: 303 trabajadores de una empresa manufacturera de jabón en Bogotá, donde predominó el género masculino (51,82%) y la población adulta media entre 30-39 años (57,42%). La prevalencia del dolor lumbar en la población fue de 61,39% (186). La edad no se asoció estadísticamente al dolor lumbar. Se encontró asociación estadística entre el síntoma dolor lumbar y extensión de cuello (p=0,05 OR1.95 IC 1.33-2.88), así como con agarrar o sujetar objetos (p= 0,036. OR 2.3 IC 1.59-3.51) y con las exigencias físicas laborales (p= 0.001 OR 1.99 IC 1.31-3.02). Conclusiones: La población estudiada presentó una alta prevalencia de dolor lumbar, con predominio en personal que realiza labores operativas, y del género femenino. La adopción de posturas de extensión del cuello y la sujeción o agarre de objetos son factores asociados directamente con la aparición de lumbalgia.
Resumo:
This article aims to present the relation between the selected socio environmental indicators used to make the expert system environment (SEA) as tool for automate the process of viability consultation for implementation of new constructions, which tends to increase the agility of the public administration within the control of use and occupation of municipal land. The development of this tool is justified since the urban growth in most Brazilian cities has promoted sociospatial segregation, marginalization of the poor and degradation of natural environments. To elaborate the conceptual model of the SEA, the present study has selected socio environmental indicators and, also, has used parameters of environmental law and land use. For each indicator was determined a value that is measured by a checklist procedure and for the analysis of the legislation and crossed with the city’s basemap. Thus, it was made a connection between the characterizations of the environment versus the type of work in viability, resulting in a graph which allowed measuring the significant environmental impact. The implementation of the environmental modeling system encounters the instrumentalization of the municipal administration, which will feature modern land management tool.
Resumo:
Oil spills cause great damage to coastal habitats, especially when rapid and suitable response measures are not taken. Establishing high priority areas is fundamental for the operation of response teams. Under this context and considering the need for keeping all geographical information up-to-date for emergencial use, the present study proposes employing a decision tree coupled with a knowledge-based approach using GIS to assign oil sensitivity indices to Brazilian coastal habitats. The modelled system works based on rules set by the official standards of Brazilian Federal Environment Organ. We tested it on one of the littoral regions of Brazil where transportation of petroleum is most intense: the coast of the municipalities of Sao Sebastiao and Caraguatatuba in the northern littoral of São Paulo state, Brazil. The system automatically ranked the littoral sensitivity index of the study area habitats according to geographical conditions during summer and winter; since index ranks of some habitats varied between these seasons because of sediment alterations. The obtained results illustrate the great potential of the proposed system in generating ESI maps and in aiding response teams during emergency operations. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The lack of satisfactory consensus for characterizing the system intelligence and structured analytical decision models has inhibited the developers and practitioners to understand and configure optimum intelligent building systems in a fully informed manner. So far, little research has been conducted in this aspect. This research is designed to identify the key intelligent indicators, and develop analytical models for computing the system intelligence score of smart building system in the intelligent building. The integrated building management system (IBMS) was used as an illustrative example to present a framework. The models presented in this study applied the system intelligence theory, and the conceptual analytical framework. A total of 16 key intelligent indicators were first identified from a general survey. Then, two multi-criteria decision making (MCDM) approaches, the analytic hierarchy process (AHP) and analytic network process (ANP), were employed to develop the system intelligence analytical models. Top intelligence indicators of IBMS include: self-diagnostic of operation deviations; adaptive limiting control algorithm; and, year-round time schedule performance. The developed conceptual framework was then transformed to the practical model. The effectiveness of the practical model was evaluated by means of expert validation. The main contribution of this research is to promote understanding of the intelligent indicators, and to set the foundation for a systemic framework that provide developers and building stakeholders a consolidated inclusive tool for the system intelligence evaluation of the proposed components design configurations.
Resumo:
1. Species' distribution modelling relies on adequate data sets to build reliable statistical models with high predictive ability. However, the money spent collecting empirical data might be better spent on management. A less expensive source of species' distribution information is expert opinion. This study evaluates expert knowledge and its source. In particular, we determine whether models built on expert knowledge apply over multiple regions or only within the region where the knowledge was derived. 2. The case study focuses on the distribution of the brush-tailed rock-wallaby Petrogale penicillata in eastern Australia. We brought together from two biogeographically different regions substantial and well-designed field data and knowledge from nine experts. We used a novel elicitation tool within a geographical information system to systematically collect expert opinions. The tool utilized an indirect approach to elicitation, asking experts simpler questions about observable rather than abstract quantities, with measures in place to identify uncertainty and offer feedback. Bayesian analysis was used to combine field data and expert knowledge in each region to determine: (i) how expert opinion affected models based on field data and (ii) how similar expert-informed models were within regions and across regions. 3. The elicitation tool effectively captured the experts' opinions and their uncertainties. Experts were comfortable with the map-based elicitation approach used, especially with graphical feedback. Experts tended to predict lower values of species occurrence compared with field data. 4. Across experts, consensus on effect sizes occurred for several habitat variables. Expert opinion generally influenced predictions from field data. However, south-east Queensland and north-east New South Wales experts had different opinions on the influence of elevation and geology, with these differences attributable to geological differences between these regions. 5. Synthesis and applications. When formulated as priors in Bayesian analysis, expert opinion is useful for modifying or strengthening patterns exhibited by empirical data sets that are limited in size or scope. Nevertheless, the ability of an expert to extrapolate beyond their region of knowledge may be poor. Hence there is significant merit in obtaining information from local experts when compiling species' distribution models across several regions.
Resumo:
The World Wide Web has become a medium for people to share information. People use Web-based collaborative tools such as question answering (QA) portals, blogs/forums, email and instant messaging to acquire information and to form online-based communities. In an online QA portal, a user asks a question and other users can provide answers based on their knowledge, with the question usually being answered by many users. It can become overwhelming and/or time/resource consuming for a user to read all of the answers provided for a given question. Thus, there exists a need for a mechanism to rank the provided answers so users can focus on only reading good quality answers. The majority of online QA systems use user feedback to rank users’ answers and the user who asked the question can decide on the best answer. Other users who didn’t participate in answering the question can also vote to determine the best answer. However, ranking the best answer via this collaborative method is time consuming and requires an ongoing continuous involvement of users to provide the needed feedback. The objective of this research is to discover a way to recommend the best answer as part of a ranked list of answers for a posted question automatically, without the need for user feedback. The proposed approach combines both a non-content-based reputation method and a content-based method to solve the problem of recommending the best answer to the user who posted the question. The non-content method assigns a score to each user which reflects the users’ reputation level in using the QA portal system. Each user is assigned two types of non-content-based reputations cores: a local reputation score and a global reputation score. The local reputation score plays an important role in deciding the reputation level of a user for the category in which the question is asked. The global reputation score indicates the prestige of a user across all of the categories in the QA system. Due to the possibility of user cheating, such as awarding the best answer to a friend regardless of the answer quality, a content-based method for determining the quality of a given answer is proposed, alongside the non-content-based reputation method. Answers for a question from different users are compared with an ideal (or expert) answer using traditional Information Retrieval and Natural Language Processing techniques. Each answer provided for a question is assigned a content score according to how well it matched the ideal answer. To evaluate the performance of the proposed methods, each recommended best answer is compared with the best answer determined by one of the most popular link analysis methods, Hyperlink-Induced Topic Search (HITS). The proposed methods are able to yield high accuracy, as shown by correlation scores: Kendall correlation and Spearman correlation. The reputation method outperforms the HITS method in terms of recommending the best answer. The inclusion of the reputation score with the content score improves the overall performance, which is measured through the use of Top-n match scores.
Resumo:
Numerous expert elicitation methods have been suggested for generalised linear models (GLMs). This paper compares three relatively new approaches to eliciting expert knowledge in a form suitable for Bayesian logistic regression. These methods were trialled on two experts in order to model the habitat suitability of the threatened Australian brush-tailed rock-wallaby (Petrogale penicillata). The first elicitation approach is a geographically assisted indirect predictive method with a geographic information system (GIS) interface. The second approach is a predictive indirect method which uses an interactive graphical tool. The third method uses a questionnaire to elicit expert knowledge directly about the impact of a habitat variable on the response. Two variables (slope and aspect) are used to examine prior and posterior distributions of the three methods. The results indicate that there are some similarities and dissimilarities between the expert informed priors of the two experts formulated from the different approaches. The choice of elicitation method depends on the statistical knowledge of the expert, their mapping skills, time constraints, accessibility to experts and funding available. This trial reveals that expert knowledge can be important when modelling rare event data, such as threatened species, because experts can provide additional information that may not be represented in the dataset. However care must be taken with the way in which this information is elicited and formulated.