934 resultados para EFFERENT CONNECTIONS
Resumo:
In the context of a memory task, participants were presented with pictures displaying biological and cultural threat stimuli or neutral stimuli (stimulus relevance manipulation) with superimposed symbols signaling monetary gains or losses (goal conduciveness manipulation). Results for heart rate and facial electromyogram show differential efferent effects of the respective appraisal outcomes and provide first evidence for sequential processing, as postulated by Scherer's component process model of emotion. Specifically, as predicted, muscle activity over the brow and cheek regions marking the process of relevance appraisal occurred significantly earlier than facial muscle activity markers of goal conduciveness appraisal. Heart rate, in contrast, was influenced by the stimulus relevance manipulation only.
Resumo:
AIM The autonomic innervation of the heart consists of sympathetic and parasympathetic nerve fibres, and fibres of the intrinsic ganglionated plexus with noradrenaline and acytylcholine as principal neurotransmitters. The fibres co-release neuropeptides to modulate intracardiac neurotransmission by specific presynaptic and postsynaptic receptors. The coexpression of angiotensin II in sympathetic fibres of the human heart and its role are not known so far. METHODS Autopsy specimens of human hearts were studied (n=3; ventricles). Using immunocytological methods, cryostat sections were stained by a murine monoclonal antibody (4B3) directed against angiotensin II and co-stained by polyclonal antibodies against tyrosine hydroxylase, a catecholaminergic marker. Visualisation of the antibodies was by confocal light microscopy or laser scanning microscopy. RESULTS Angiotensin II-positive autonomic fibres with and without a catecholaminergic cophenotype (hydroxylase-positive) were found in all parts of the human ventricles. In the epicardium, the fibres were grouped in larger bundles of up to 100 and more fibres. They followed the preformed anatomic septa and epicardial vessels towards the myocardium and endocardium where the bundles dissolved and the individual fibres spread between myocytes and within the endocardium. Generally, angiotensinergic fibres showed no synaptic enlargements or only a few if they were also catecholaminergic. The exclusively catechalominergic fibres were characterised by multiple beaded synapses. CONCLUSION The autonomic innervation of the human heart contains angiotensinergic fibres with a sympathetic efferent phenotype and exclusively angiotensinergic fibers representing probably afferents. Angiotensinergic neurotransmission may modulate intracardiac sympathetic and parasympathetic activity and thereby influence cardiac and circulatory function.
Resumo:
The aim of this study was to describe the induction and expression mechanisms of a persistent bursting activity in a horizontal slice preparation of the rat limbic system that includes the ventral part of the hippocampus and the entorhinal cortex. Disinhibition of this preparation by bicuculline led to interictal-like bursts in the CA3 region that triggered synchronous activity in the entorhinal cortex. Washout of bicuculline after a 1 hr application resulted in a maintained production of hippocampal bursts that continued to spread to the entorhinal cortex. Separation of CA3 from the entorhinal cortex caused the activity in the latter to become asynchronous with CA3 activity in the presence of bicuculline and disappear after washout; however, in CA3, neither the induction of bursting nor its persistence were affected. Associated with the CA3 persistent bursting, a strengthening of recurrent collateral excitatory input to CA3 pyramidal cells and a decreased input to CA3 interneurons was found. Both the induction of the persistent bursting and the changes in synaptic strength were prevented by antagonists of metabotropic glutamate 5 (mGlu5) or NMDA receptors or protein synthesis inhibitors and did not occur in slices from mGlu5 receptor knock-out mice. The above findings suggest potential synaptic mechanisms by which the hippocampus switches to a persistent interictal bursting mode that may support a spread of interictal-like bursting to surrounding temporal lobe regions.
Organization of the inferotemporal cortex in the macaque monkey: Connections of areas PITv and CITvp
Resumo:
Visual cortex of macaque monkeys consists of a large number of cortical areas that span the occipital, parietal, temporal, and frontal lobes and occupy more than half of cortical surface. Although considerable progress has been made in understanding the contributions of many occipital areas to visual perceptual processing, much less is known concerning the specific functional contributions of higher areas in the temporal and frontal lobes. Previous behavioral and electrophysiological investigations have demonstrated that the inferotemporal cortex (IT) is essential to the animal's ability to recognize and remember visual objects. While it is generally recognized that IT consists of a number of anatomically and functionally distinct visual-processing areas, there remains considerable controversy concerning the precise number, size, and location of these areas. Therefore, the precise delineation of the cortical subdivisions of inferotemporal cortex is critical for any significant progress in the understanding of the specific contributions of inferotemporal areas to visual processing. In this study, anterograde and/or retrograde neuroanatomical tracers were injected into two visual areas in the ventral posterior and central portions of IT (areas PITv and CITvp) to elucidate the corticocortical connections of these areas with well known areas of occipital cortex and with less well understood regions of inferotemporal cortex. The locations of injection sites and the delineation of the borders of many occipital areas were aided by the pattern of interhemispheric connections, revealed following callosal transection and subsequent labeling with HRP. The resultant patterns of connections were represented on two-dimensional computational (CARET) and manual cortical maps and the laminar characteristics and density of the projection fields were quantified. The laminar and density features of these corticocortical connections demonstrate thirteen anatomically distinct subdivisions or areas distributed within the superior temporal sulcus and across the inferotemporal gyrus. These results serve to refine previous descriptions of inferotemporal areas, validate recently identified areas, and provide a new description of the hierarchical relationships among occipitotemporal cortical areas in macaques. ^
Resumo:
Habitat connectivity is important for the survival of species that occupy habitat patches too small to sustain an isolated population. A prominent example of such a species is the European bison (Bison bonasus), occurring only in small, isolated herds, and whose survival will depend on establishing larger, well-connected populations. Our goal here was to assess habitat connectivity of European bison in the Carpathians. We used an existing bison habitat suitability map and data on dispersal barriers to derive cost surfaces, representing the ability of bison to move across the landscape, and to delineate potential connections (as least-cost paths) between currently occupied and potential habitat patches. Graph theory tools were then employed to evaluate the connectivity of all potential habitat patches and their relative importance in the network. Our analysis showed that existing bison herds in Ukraine are isolated. However, we identified several groups of well-connected habitat patches in the Carpathians which could host a large population of European bison. Our analysis also located important dispersal corridors connecting existing herds, and several promising locations for future reintroductions (especially in the Eastern Carpathians) that should have a high priority for conservation efforts. In general, our approach indicates the most important elements within a landscape mosaic for providing and maintaining the overall connectivity of different habitat networks and thus offers a robust and powerful tool for conservation planning.
Resumo:
This article explores Islamic politics in two Muslim-majority countries in Southeast Asia, Indonesia and Malaysia, by linking their trajectories, from late colonial emergence to recent upsurge, to broad concerns of political economy, including changing social bases, capitalist transformation, state policies, and economic crises. The Indonesian and Malaysian trajectories of Islamic politics are tracked in a comparative exercise that goes beyond the case studies to suggest that much of contemporary Islamic politics cannot be explained by reference to Islam alone, but to how Islamic identities and agendas are forged in contexts of modern and profane social contestation.
Resumo:
The modelling of critical infrastructures (CIs) is an important issue that needs to be properly addressed, for several reasons. It is a basic support for making decisions about operation and risk reduction. It might help in understanding high-level states at the system-of-systems layer, which are not ready evident to the organisations that manage the lower level technical systems. Moreover, it is also indispensable for setting a common reference between operator and authorities, for agreeing on the incident scenarios that might affect those infrastructures. So far, critical infrastructures have been modelled ad-hoc, on the basis of knowledge and practice derived from less complex systems. As there is no theoretical framework, most of these efforts proceed without clear guides and goals and using informally defined schemas based mostly on boxes and arrows. Different CIs (electricity grid, telecommunications networks, emergency support, etc) have been modelled using particular schemas that were not directly translatable from one CI to another. If there is a desire to build a science of CIs it is because there are some observable commonalities that different CIs share. Up until now, however, those commonalities were not adequately compiled or categorized, so building models of CIs that are rooted on such commonalities was not possible. This report explores the issue of which elements underlie every CI and how those elements can be used to develop a modelling language that will enable CI modelling and, subsequently, analysis of CI interactions, with a special focus on resilience
Resumo:
In this work, we propose a variant of P system based on the rewriting of string-objects by means of evolutionary rules. The membrane structure of such a P system seems to be a very natural tool for simulating the filters in accepting networks of evolutionary processors with filtered connections. We discuss an informal construction supporting this simulation. A detailed proof is to be considered in an extended version of this work.
Resumo:
This paper addresses two aspects of the behavior of interior reinforced concrete waffle flat plate?column connections under lateral loads: the share of the unbalanced moment between flexure and excentric shear, and the effect of the transverse beams. A non-linear finite element model (benchmark model) was developed and calibrated with the results of quasi-static cyclic tests conducted on a 3/5 scale specimen. First, from this numerical model, the portion cv of the unbalanced moment transferred by the excentricity of shear about the centroid of the critical sections defined by Eurocode 2 (EC-2) and by ACI 318-11 was calculated and compared with the share-out prescribed by these codes. It is found that while the critical section of EC-2 is consistent with the cv provided by this code, in the case of ACI 318-11, the value assigned to cv is far below (about 50% smaller) the actual one obtained with the numerical simulations. Second, from the benchmark model, seven additional models were developed by varying the depth D of the transverse beam over the thickness h of the plate. It was found that the ductility of the connection and the effective width of the plate can respectively be increased up to 50% and 10% by raising D/h to 2 and 1.5.
Resumo:
The need to modal semi-rigid behaviour of joints to analyze the seismic response of bridges arises when retrofitting devices such as cables or bolts are introduced in otherwise free joints or when the design takes advantage of the plastification of structural sections to impose energy dissipation though their ductile behaviour. The paper presents some preliminary results of a parametric study carried out using s1mplified computational models. Two instances where semirigid connection play a role in the seismic response of bridges have been discussed. The ongoing research from which this paper is extracted is intended to enhance understanding on the effectivness of various bridge retrofitting measures and to provide information that may be used to calibrate some ECS-2 rules. Finally, it is hoped that the development of reliable simplified techniques for nonlinear analysis will provide designers with useful tools to examine behavior and ultimately improve seismic safety in actual bridges.
Resumo:
Social behavior is mainly based on swarm colonies, in which each individual shares its knowledge about the environment with other individuals to get optimal solutions. Such co-operative model differs from competitive models in the way that individuals die and are born by combining information of alive ones. This paper presents the particle swarm optimization with differential evolution algorithm in order to train a neural network instead the classic back propagation algorithm. The performance of a neural network for particular problems is critically dependant on the choice of the processing elements, the net architecture and the learning algorithm. This work is focused in the development of methods for the evolutionary design of artificial neural networks. This paper focuses in optimizing the topology and structure of connectivity for these networks