928 resultados para Domain exchanges
Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation.
Resumo:
Tumors are often compared to wounds that do not heal, where the crosstalk between tumor cells and their surrounding stroma is crucial at all stages of development, from the initial primary growth to metastasis. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts, also referred to as "cancer-associated fibroblasts" (CAFs), primarily, but not exclusively, in response to transforming growth factor-ß (TGF-ß). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among molecules implicated in stroma remodeling, matrix metalloproteinases (MMPs), and MMP-g in particular, play a prominent role. However, the mechanisms that regulate MMP-g activation and function remain poorly understood. Recent evidence indicates that tumor cell surface association of MMP-g is an important event in its activation, and more generally in tumor growth and invasion. In the present work we address the potential association of MMP-g activity with cell-surface recruitment to human fibroblasts. We show for the first time that recruitment of MMP-g to the MRC-5 fibroblast cell surface occurs through the fibronectin-like (FN) domain, shared only by MMP-g and MMP-2 among all the MMPs. Functional assays suggest that both the pro- and active form of MMP-g trigger a-smooth muscle actin (aSMA) expression in resting fibroblasts that reflects myofibroblast differentiation, possibly through TGF-ß activation. Moreover, the FN domain of MMP-g inhibits both MMP-g-induced TGF-ß activation and aSMA expression by sequestering MMP-g. Xenograft experiments in NOD/SCID mice using HT1080 fibrosarcoma or MDA-MD231 breast adenocarcinoma cells stably expressing the FN domain of MMP-g revealed no changes in primary tumor growth. However, in the context of metastasis, expression of the FN domain by these same tumor cells dramatically increased their metastatic proclivity whereas expression of wt MMP-g either promoted no change or actually reduced the number of metastases. We observed a decrease of an active form of MMP-g in MDA-MB231 cells overexpressing the FN domain suggesting that the FN domain may inhibit MMP-g activity in Tumors are often compared to wounds that do not heal, where the crosstalk between tumor cells and their surrounding stroma is crucial at all stages of development, from the initial primary growth to metastasis. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts, also referred to as "cancer-associated fibroblasts" (CAFs), primarily, but not exclusively, in response to transforming growth factor-ß (TGF-ß). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among molecules implicated in stroma remodeling, matrix metalloproteinases (MMPs), and MMP-g in particular, play a prominent role. However, the mechanisms that regulate MMP-g activation and function remain poorly understood. Recent evidence indicates that tumor cell surface association of MMP-g is an important event in its activation, and more generally in tumor growth and invasion. In the present work we address the potential association of MMP-g activity with cell-surface recruitment to human fibroblasts. We show for the first time that recruitment of MMP-g to the MRC-5 fibroblast cell surface occurs through the fibronectin-like (FN) domain, shared only by MMP-g and MMP-2 among all the MMPs. Functional assays suggest that both the pro- and active form of MMP-g trigger a-smooth muscle actin (aSMA) expression in resting fibroblasts that reflects myofibroblast differentiation, possibly through TGF-ß activation. Moreover, the FN domain of MMP-g inhibits both MMP-g-induced TGF-ß activation and aSMA expression by sequestering MMP-g. Xenograft experiments in NOD/SCID mice using HT1080 fibrosarcoma or MDA-MD231 breast adenocarcinoma cells stably expressing the FN domain of MMP-9 revealed no changes in primary tumor growth. However, in the context of metastasis, expression of the FN domain by these same tumor cells dramatically increased their metastatic proclivity whereas expression of wt MMP-g either promoted no change or actually reduced the number of metastases. We observed a decrease of an active form of MMP-9 in MDA-MB231 cells overexpressing the FN domain suggesting that the FN domain may inhibit MMP-9 activity in those cells and therefore prevent MMP-9-induced activation of TGF-b, which results in increased invasion. Curiously, xenografts of SW480 colorectal adenocarcinoma cells stably expressing the FN domain of MMP-9 displayed reduced growth at both the primary (subcutaneous) injection site and the lungs of NOD/SCID mice, in experimental metastasis assays, whilst the same cells overexpressing wt MMP-9 showed enhanced growth and dissemination. Gelatin zymography of conditioned medium revealed that these effects may be due to the FN domain, which displaces MMP-9 from SW480 cell surface. These observations suggest a dual role of MMP-9 and its FN domain in primary tumor growth and metastasis, underscoring the notion that the effect of MMP-9 on tumor cells may depend on the cell type and highlighting possible protective effects of MMPs in tumor progression.
Resumo:
In this paper we propose a novel unsupervised approach to learning domain-specific ontologies from large open-domain text collections. The method is based on the joint exploitation of Semantic Domains and Super Sense Tagging for Information Retrieval tasks. Our approach is able to retrieve domain specific terms and concepts while associating them with a set of high level ontological types, named supersenses, providing flat ontologies characterized by very high accuracy and pertinence to the domain.
Resumo:
Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images.
Resumo:
The study of the thermal behavior of complex packages as multichip modules (MCM¿s) is usually carried out by measuring the so-called thermal impedance response, that is: the transient temperature after a power step. From the analysis of this signal, the thermal frequency response can be estimated, and consequently, compact thermal models may be extracted. We present a method to obtain an estimate of the time constant distribution underlying the observed transient. The method is based on an iterative deconvolution that produces an approximation to the time constant spectrum while preserving a convenient convolution form. This method is applied to the obtained thermal response of a microstructure as analyzed by finite element method as well as to the measured thermal response of a transistor array integrated circuit (IC) in a SMD package.
Resumo:
The c-Jun N-terminal kinase (JNK) is a mitogen-activated protein kinase (MAPK) activated by stress-signals and involved in many different diseases. Previous results proved the powerful effect of the cell permeable peptide inhibitor d-JNKI1 (d-retro-inverso form of c-Jun N-terminal kinase-inhibitor) against neuronal death in CNS diseases, but the precise features of this neuroprotection remain unclear. We here performed cell-free and in vitro experiments for a deeper characterization of d-JNKI1 features in physiological conditions. This peptide works by preventing JNK interaction with its c-Jun N-terminal kinase-binding domain (JBD) dependent targets. We here focused on the two JNK upstream MAPKKs, mitogen-activated protein kinase kinase 4 (MKK4) and mitogen-activated protein kinase kinase 7 (MKK7), because they contain a JBD homology domain. We proved that d-JNKI1 prevents MKK4 and MKK7 activity in cell-free and in vitro experiments: these MAPKK could be considered not only activators but also substrates of JNK. This means that d-JNKI1 can interrupt downstream but also upstream events along the JNK cascade, highlighting a new remarkable feature of this peptide. We also showed the lack of any direct effect of the peptide on p38, MEK1, and extracellular signal-regulated kinase (ERK) in cell free, while in rat primary cortical neurons JNK inhibition activates the MEK1-ERK-Ets1/c-Fos cascade. JNK inhibition induces a compensatory effect and leads to ERK activation via MEK1, resulting in an activation of the survival pathway-(MEK1/ERK) as a consequence of the death pathway-(JNK) inhibition. This study should hold as an important step to clarify the strong neuroprotective effect of d-JNKI1.
Resumo:
It is very well known that the first succesful valuation of a stock option was done by solving a deterministic partial differential equation (PDE) of the parabolic type with some complementary conditions specific for the option. In this approach, the randomness in the option value process is eliminated through a no-arbitrage argument. An alternative approach is to construct a replicating portfolio for the option. From this viewpoint the payoff function for the option is a random process which, under a new probabilistic measure, turns out to be of a special type, a martingale. Accordingly, the value of the replicating portfolio (equivalently, of the option) is calculated as an expectation, with respect to this new measure, of the discounted value of the payoff function. Since the expectation is, by definition, an integral, its calculation can be made simpler by resorting to powerful methods already available in the theory of analytic functions. In this paper we use precisely two of those techniques to find the well-known value of a European call
Resumo:
We have studied domain growth during spinodal decomposition at low temperatures. We have performed a numerical integration of the deterministic time-dependent Ginzburg-Landau equation with a variable, concentration-dependent diffusion coefficient. The form of the pair-correlation function and the structure function are independent of temperature but the dynamics is slower at low temperature. A crossover between interfacial diffusion and bulk diffusion mechanisms is observed in the behavior of the characteristic domain size. This effect is explained theoretically in terms of an equation of motion for the interface.
Resumo:
We present numerical results of the deterministic Ginzburg-Landau equation with a concentration-dependent diffusion coefficient, for different values of the volume fraction phi of the minority component. The morphology of the domains affects the dynamics of phase separation. The effective growth exponents, but not the scaled functions, are found to be temperature dependent.
Resumo:
Ginzburg-Landau equations with multiplicative noise are considered, to study the effects of fluctuations in domain growth. The equations are derived from a coarse-grained methodology and expressions for the resulting concentration-dependent diffusion coefficients are proposed. The multiplicative noise gives contributions to the Cahn-Hilliard linear-stability analysis. In particular, it introduces a delay in the domain-growth dynamics.
Resumo:
We consider stochastic partial differential equations with multiplicative noise. We derive an algorithm for the computer simulation of these equations. The algorithm is applied to study domain growth of a model with a conserved order parameter. The numerical results corroborate previous analytical predictions obtained by linear analysis.
Resumo:
Front and domain growth of a binary mixture in the presence of a gravitational field is studied. The interplay of bulk- and surface-diffusion mechanisms is analyzed. An equation for the evolution of interfaces is derived from a time-dependent Ginzburg-Landau equation with a concentration-dependent diffusion coefficient. Scaling arguments on this equation give the exponents of a power-law growth. Numerical integrations of the Ginzburg-Landau equation corroborate the theoretical analysis.
Resumo:
Molecular shape has long been known to be an important property for the process of molecular recognition. Previous studies postulated the existence of a drug-like shape space that could be used to artificially bias the composition of screening libraries, with the aim to increase the chance of success in Hit Identification. In this work, it was analysed to which extend this assumption holds true. Normalized Principal Moments of Inertia Ratios (NPRs) have been used to describe the molecular shape of small molecules. It was investigated, whether active molecules of diverse targets are located in preferred subspaces of the NPR shape space. Results illustrated a significantly stronger clustering than could be expected by chance, with parts of the space unlikely to be occupied by active compounds. Furthermore, a strong enrichment of elongated, rather flat shapes could be observed, while globular compounds were highly underrepresented. This was confirmed for a wide range of small molecule datasets from different origins. Active compounds exhibited a high overlap in their shape distributions across different targets, making a purely shape based discrimination very difficult. An additional perspective was provided by comparing the shapes of protein binding pockets with those of their respective ligands. Although more globular than their ligands, it was observed that binding sites shapes exhibited a similarly skewed distribution in shape space: spherical shapes were highly underrepresented. This was different for unoccupied binding pockets of smaller size. These were on the contrary identified to possess a more globular shape. The relation between shape complementarity and exhibited bioactivity was analysed; a moderate correlation between bioactivity and parameters including pocket coverage, distance in shape space, and others could be identified, which reflects the importance of shape complementarity. However, this also suggests that other aspects are of relevance for molecular recognition. A subsequent analysis assessed if and how shape and volume information retrieved from pocket or respective reference ligands could be used as a pre-filter in a virtual screening approach. ln Lead Optimization compounds need to get optimized with respect to a variety of pararneters. Here, the availability of past success stories is very valuable, as they can guide medicinal chemists during their analogue synthesis plans. However, although of tremendous interest for the public domain, so far only large corporations had the ability to mine historical knowledge in their proprietary databases. With the aim to provide such information, the SwissBioisostere database was developed and released during this thesis. This database contains information on 21,293,355 performed substructural exchanges, corresponding to 5,586,462 unique replacements that have been measured in 35,039 assays against 1,948 molecular targets representing 30 target classes, and on their impact on bioactivity . A user-friendly interface was developed that provides facile access to these data and is accessible at http//www.swissbioisostere.ch. The ChEMBL database was used as primary data source of bioactivity information. Matched molecular pairs have been identified in the extracted and cleaned data. Success-based scores were developed and integrated into the database to allow re-ranking of proposed replacements by their past outcomes. It was analysed to which degree these scores correlate with chemical similarity of the underlying fragments. An unexpectedly weak relationship was detected and further investigated. Use cases of this database were envisioned, and functionalities implemented accordingly: replacement outcomes are aggregatable at the assay level, and it was shawn that an aggregation at the target or target class level could also be performed, but should be accompanied by a careful case-by-case assessment. It was furthermore observed that replacement success depends on the activity of the starting compound A within a matched molecular pair A-B. With increasing potency the probability to lose bioactivity through any substructural exchange was significantly higher than in low affine binders. A potential existence of a publication bias could be refuted. Furthermore, often performed medicinal chemistry strategies for structure-activity-relationship exploration were analysed using the acquired data. Finally, data originating from pharmaceutical companies were compared with those reported in the literature. It could be seen that industrial medicinal chemistry can access replacement information not available in the public domain. In contrast, a large amount of often-performed replacements within companies could also be identified in literature data. Preferences for particular replacements differed between these two sources. The value of combining different endpoints in an evaluation of molecular replacements was investigated. The performed studies highlighted furthermore that there seem to exist no universal substructural replacement that always retains bioactivity irrespective of the biological environment. A generalization of bioisosteric replacements seems therefore not possible. - La forme tridimensionnelle des molécules a depuis longtemps été reconnue comme une propriété importante pour le processus de reconnaissance moléculaire. Des études antérieures ont postulé que les médicaments occupent préférentiellement un sous-ensemble de l'espace des formes des molécules. Ce sous-ensemble pourrait être utilisé pour biaiser la composition de chimiothèques à cribler, dans le but d'augmenter les chances d'identifier des Hits. L'analyse et la validation de cette assertion fait l'objet de cette première partie. Les Ratios de Moments Principaux d'Inertie Normalisés (RPN) ont été utilisés pour décrire la forme tridimensionnelle de petites molécules de type médicament. Il a été étudié si les molécules actives sur des cibles différentes se co-localisaient dans des sous-espaces privilégiés de l'espace des formes. Les résultats montrent des regroupements de molécules incompatibles avec une répartition aléatoire, avec certaines parties de l'espace peu susceptibles d'être occupées par des composés actifs. Par ailleurs, un fort enrichissement en formes allongées et plutôt plates a pu être observé, tandis que les composés globulaires étaient fortement sous-représentés. Cela a été confirmé pour un large ensemble de compilations de molécules d'origines différentes. Les distributions de forme des molécules actives sur des cibles différentes se recoupent largement, rendant une discrimination fondée uniquement sur la forme très difficile. Une perspective supplémentaire a été ajoutée par la comparaison des formes des ligands avec celles de leurs sites de liaison (poches) dans leurs protéines respectives. Bien que plus globulaires que leurs ligands, il a été observé que les formes des poches présentent une distribution dans l'espace des formes avec le même type d'asymétrie que celle observée pour les ligands: les formes sphériques sont fortement sous représentées. Un résultat différent a été obtenu pour les poches de plus petite taille et cristallisées sans ligand: elles possédaient une forme plus globulaire. La relation entre complémentarité de forme et bioactivité a été également analysée; une corrélation modérée entre bioactivité et des paramètres tels que remplissage de poche, distance dans l'espace des formes, ainsi que d'autres, a pu être identifiée. Ceci reflète l'importance de la complémentarité des formes, mais aussi l'implication d'autres facteurs. Une analyse ultérieure a évalué si et comment la forme et le volume d'une poche ou de ses ligands de référence pouvaient être utilisés comme un pré-filtre dans une approche de criblage virtuel. Durant l'optimisation d'un Lead, de nombreux paramètres doivent être optimisés simultanément. Dans ce contexte, la disponibilité d'exemples d'optimisations réussies est précieuse, car ils peuvent orienter les chimistes médicinaux dans leurs plans de synthèse par analogie. Cependant, bien que d'un extrême intérêt pour les chercheurs dans le domaine public, seules les grandes sociétés pharmaceutiques avaient jusqu'à présent la capacité d'exploiter de telles connaissances au sein de leurs bases de données internes. Dans le but de remédier à cette limitation, la base de données SwissBioisostere a été élaborée et publiée dans le domaine public au cours de cette thèse. Cette base de données contient des informations sur 21 293 355 échanges sous-structuraux observés, correspondant à 5 586 462 remplacements uniques mesurés dans 35 039 tests contre 1948 cibles représentant 30 familles, ainsi que sur leur impact sur la bioactivité. Une interface a été développée pour permettre un accès facile à ces données, accessible à http:/ /www.swissbioisostere.ch. La base de données ChEMBL a été utilisée comme source de données de bioactivité. Une version modifiée de l'algorithme de Hussain et Rea a été implémentée pour identifier les Matched Molecular Pairs (MMP) dans les données préparées au préalable. Des scores de succès ont été développés et intégrés dans la base de données pour permettre un reclassement des remplacements proposés selon leurs résultats précédemment observés. La corrélation entre ces scores et la similarité chimique des fragments correspondants a été étudiée. Une corrélation plus faible qu'attendue a été détectée et analysée. Différents cas d'utilisation de cette base de données ont été envisagés, et les fonctionnalités correspondantes implémentées: l'agrégation des résultats de remplacement est effectuée au niveau de chaque test, et il a été montré qu'elle pourrait également être effectuée au niveau de la cible ou de la classe de cible, sous réserve d'une analyse au cas par cas. Il a en outre été constaté que le succès d'un remplacement dépend de l'activité du composé A au sein d'une paire A-B. Il a été montré que la probabilité de perdre la bioactivité à la suite d'un remplacement moléculaire quelconque est plus importante au sein des molécules les plus actives que chez les molécules de plus faible activité. L'existence potentielle d'un biais lié au processus de publication par articles a pu être réfutée. En outre, les stratégies fréquentes de chimie médicinale pour l'exploration des relations structure-activité ont été analysées à l'aide des données acquises. Enfin, les données provenant des compagnies pharmaceutiques ont été comparées à celles reportées dans la littérature. Il a pu être constaté que les chimistes médicinaux dans l'industrie peuvent accéder à des remplacements qui ne sont pas disponibles dans le domaine public. Par contre, un grand nombre de remplacements fréquemment observés dans les données de l'industrie ont également pu être identifiés dans les données de la littérature. Les préférences pour certains remplacements particuliers diffèrent entre ces deux sources. L'intérêt d'évaluer les remplacements moléculaires simultanément selon plusieurs paramètres (bioactivité et stabilité métabolique par ex.) a aussi été étudié. Les études réalisées ont souligné qu'il semble n'exister aucun remplacement sous-structural universel qui conserve toujours la bioactivité quel que soit le contexte biologique. Une généralisation des remplacements bioisostériques ne semble donc pas possible.