984 resultados para Dna-replication Errors


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Résumé Les télomères sont les structures ADN-protéines des extrémités des chromosomes des eucaryotes. L'ADN télomérique est constitué de courtes séquences répétitives. L'intégrité des télomères est essentielle pour protéger les extrémités des chromosomes contre les systèmes de dégradations et pour les distinguer des cassures de l'ADN double brin. Parce que la machinerie de la réplication de l'ADN n'est pas capable de répliquer l'extrémité des chromosomes, les télomères raccourcissent au fur et à mesure des cycles de réplication. Dès que les télomères atteignent une longueur critique, leur structure protectrice est perdue. Cela induit un signal de dommage de l'ADN et l'arrêt du cycle cellulaire. Pour contrebalancer le raccourcissement des télomères, les cellules qui s'auto régénèrent, dont les cellules de la moelle osseuse, les lymphocytes activés et 80-90% des cellules cancéreuses, expriment la télomérase. C'est une ribonucléoprotéine qui a la capacité de synthétiser des séquences télomériques par transcription inverse d'une courte séquence contenue dans sa propre sous-unité ARN avec laquelle elle est associée. La télomérase humaine est une enzyme processive au niveau de l'addition des nucléotides et aussi des répétitions télomériques. La télomérase de levure et la télomérase humaine sont toutes deux dimériques et il a été montré que la télomérase humaine recombinante contient deux ARN qui coopèrent pour fonctionner ainsi que deux sous-unités catalytiques. Cependant, il n'a pas encore été montré quel est le rôle de la dimérisation dans l'activité de la télomérase. Afin d'élucider ce rôle, nous avons exprimé, reconstitué et purifié la télomérase humaine dimérique recombinante. Et pour étudier l'effet d'ARN mutants sur l'activité de la télomérase, nous avons développé une méthode pour reconstituer et enrichir en hétérodimères de télomérase. Les hétérodimères contiennent une sous-unité ARN sauvage et une sous-unité ARN mutée au niveau de la séquence de la matrice. Sur l'ARN muté nous avons introduit une étiquette aptamer ARN-S1 puis nous avons purifié la télomérase via l'etiquette Si. Nous avons montré que la dimérisation est essentielle pour l'activité de la télomérase. Nos données indiquent que chaque télomérase du dimère allonge leur substrat, l'ADN télomérique, indépendamment l'une de l'autre à chaque cycle d'élongation mais que l'addition itérative de répétitions télomériques nécessite une coopération entre les deux télomérases du dimère. Nous proposons donc un modèle dans lequel les deux télomérases du dimères se lient et allongent deux substrats télomères et que pendant l'élongation processive les deux enzymes subissent un changement de conformation de manière coordonnée, ce changement va permettre le repositionnement des substrats pour d'autres cycles d'additions de répétitions télomériques. Dyskeratosis congenita est une maladie mortelle due majoritairement au disfonctionnement de la moelle osseuse. Dans la forme autosomale de la maladie, l'ARN de la télomérase contient des mutations. En utilisant notre système de reconstitution, nous avons montré que ces ARN mutés, qui ont perdu leur activité enzymatique dans le cas d'un homodimère de mutants, sont dominant négatifs quand ils sont présents dans les hétérodimères sauvage/mutant. Cet effet trans-dominant négatif pourrait contribuer à la progression de la maladie. Abstract Telomeres are protein-DNA structures at the ends of linear eukaryotic chromosomes. The telomeric DNA consists of tandemly repeated sequences. Telomeric integrity is essential to protect chromosomal ends from nucleolytic degradation and to prevent their recognition as DNA double strand breaks. Due to the inability of the conventional DNA replication machinery to replicate terminal DNA stretches, telomeres shorten with continuous rounds of DNA replication. As soon as telomeres reach a critical length, their protective structure is lost and the deprotected telomeres will induce a DNA damage response leading to cell cycle arrest. To counteract telomere shortening, self-renewing cells, including bone marrow cells, activated lymphocytes and 80-90% of cancer cells express the cellular reverse transcriptase telomerase, which has the capacity to synthesize telomeric repeats by reverse transcription of a short template sequence encoded by its stably associated RNA subunit. Human telomerase is a processive enzyme for nucleotide as well as repeat addition. Both yeast and human telomerase are dimeric enzymes and recombinant human telomerase has been shown to contain two functionally cooperating RNAs and most probably also two protein subunits. However, it has remained unclear how dimerization may contribute to telomerase activity. To study the role of dimerization, we expressed, reconstituted and purified recombinant human telomerase. We also developed a new method to reconstitute and enrich for telomerase heterodimers containing wild-type (wt) and mutant telomerase RNA subunits. To this end we introduced an S1-RNA-aptamer tag into telomerase RNA and purified telomerase reconstituted with a mixture of untagged and tagged RNA via the S1-tag. Using this experimental system, we introduced template mutations in the tagged RNA subunit and examined the effect of mutant RNAs on wt telomerase activity in wt/mutant heterodimers. We obtained evidence that dimerization is essential for telomerase activity. Our data indicate that the two subunits elongate telomere substrates independently of each other during single rounds of elongation, but that iterative addition of telomeric repeats requires cooperation between the two subunits. We suggest a model, in which dimeric telomerases bind and elongate two telomere substrates and that the two subunits undergo coordinated conformational changes during processive elongation that enable repositioning the substrates for subsequent rounds of repeat addition. Dyskeratosis congenita is a multisystemic disease with bone marrow failure as the major cause of death. The autosomal form of this disease was found to harbor mutations in the telomerase RNA. Using our reconstitution system, we tested whether mutant dyskeratosis telomerase RNAs behaved in a dominant negative manner. We observed that dyskeratosis telomerase RNA mutants, which lacked enzymatic activity were dominant negative, when present in wt/ mutant heterodimers. The transdominant negative effect of these mutants may contribute to disease progression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract: The centrosome is the major microtubule organizing center (MTOC) of most animal cells. As such, it is essential for a number of processes, including polarized secretion or bipolar spindle assembly. Hence, centrosome number needs to be controlled precisely in coordination with DNA replication. Cells early in the cell cycle contain one centrosome that duplicates during S-phase to give rise to two centrosomes that organize a bipolar spindle during mitosis. A failure in this process is likely to engage the spindle assembly checkpoint and threaten genome stability. Despite its importance for normal and uncontrolled proliferation the mechanisms underlying centrosome duplication are still unclear. The Caenorhabditis elegans embryo is well suited to study the mechanisms of centrosome duplication. It allows for the analysis of cellular processes with high temporal and spatial resolution. Gene identification and inactivation techniques are very powerful and a wide set of mutant and transgenic strains facilitates analysis. My thesis project consisted of characterizing three sas-genes: sas-4, sas-5 and sas-¬6. Embryos lacking these genes fail to form a bipolar spindle, hence their name (spindle assembly). I established that sas-4(RNAi) and sas-6(RNAi) embryos do not form daughter centrioles and thus do not duplicate their centrosomes. Furthermore, I showed that both proteins localize to the cytoplasm and are strikingly enriched at centrioles throughout the cell cycle. By performing fluorescent recovery after photobleaching (FRAP) experiments and differentially labeling centrioles, I established that both proteins are recruited to centrioles once per cell cycle when daughter centrioles form. In contrast, SAS-5, PLK-1 and SPD-2 shuttle permanently between the cytoplasm and centrioles. By showing that SAS-5 and SAS-6 interact in vivo, I established a functional relationship between the proteins. Testing the putative human homologue of SAS-6 (HsSAS-6) and a distant relative of SAS-4 (CPAP), I was able to show that these proteins are required for centrosome duplication in human cells. In addition I found that overexpression of GFP¬HsSAS-6 leads to formation of extra centrosomes. In conclusion, we identified and gained important insights into proteins required for centrosome duplication in C. elegans and in human cells. Thus, our work contributes to further elucidate an important step of cell division in normal and malignant tissues. Eventually, this may allow for the development of novel diagnostic or therapeutic reagents to treat cancer patients. Résumé: Le centrosome est le principal centre organisateur des microtubules dans les cellules animales. De ce fait, il est essentiel pour un certain nombre de processus, comme l'adressage polarisé ou la mise en place d'un fuseau bipolaire. Le nombre de centrosome doit être contrôlé de façon précise et en coordination avec la réplication de l'ADN. Au début du cycle cellulaire, les cellules n'ont qu'un seul centrosome qui se duplique au cours de la phase S pour donner naissance à deux centrosomes qui forment le fuseau bipolaire pendant la mitose. Des défauts dans ce processus déclencheront probablement le "checkpoint" d'assemblage du fuseau et menaceront la stabilité du génome. Malgré leurs importances pour la prolifération normale ou incontrôlée des cellules, les mécanismes gouvernant la duplication des centrosomes restent obscures. L'embryon de Caenorhabditis elegans est bien adapté pour étudier les mécanismes de duplication des centrosomes. Il permet l'analyse des processus cellulaires avec une haute résolution spatiale et temporelle. L'identification des gènes et les techniques d'inactivation sont très puissantes et de larges collections de mutants et de lignées transgéniques facilitent les analyses. Mon projet de thèse a consisté à caractérisé trois gènes: sas-4, sas-5 et sas-6. Les embryons ne possédant pas ces gènes ne forment pas de fuseaux bipolaires, d'où leur nom (spindle assembly). J'ai établi que les embryons sas-4(RNAi) et sas-6(RNAi) ne forment pas de centrioles fils, et donc ne dupliquent pas leur centrosome. De plus, j'ai montré que les deux protéines sont localisées dans le cytoplasme et sont étonnamment enrichies aux centrioles tout le long du cycle cellulaire. En réalisant des expériences de FRAP (fluorscence recovery after photobleaching) et en marquant différentiellement les centrioles, j'ai établi que ces deux protéines sont recrutées une fois par cycle cellulaire aux centrioles, au moment de la duplication. Au contraire, SAS-5, PLK-1 et SPD-2 oscillent en permanence entre le cytoplasme et les centrioles. En montrant que SAS-5 et SAS-6 interagissent in vivo, j'ai établi une relation fonctionnelle entre les deux protéines. En testant les homologues humains putatifs de SAS-6 (HsSAS-6) et de SAS-4 (CPAP), j'ai été capable de montrer que ces protéines étaient aussi requises pour la duplication des centrosomes dans les cellules humaines. De plus, j'ai montré que la surexpression de GFP-HsSAS-6 entrainait la formation de centrosomes surnuméraires. En conclusion, nous avons identifié et progressé dans la compréhension de protéines requises pour la duplication des centrosomes chez C. elegans et dans les cellules humaines. Ainsi, notre travail contribue à mieux élucider une étape importante du la division cellulaire dans les cellules normales et malignes. A terme, ceci devrait aider au développement de nouveaux diagnostics ou de traitements thérapeuthiques pour soigner les malades du cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) infects B lymphocytes and expresses a superantigen on the cell surface after integration of its reverse-transcribed genome. Superantigen-dependent B- and T-cell activation becomes detectable 2 to 3 days after infection. We show here that before this event, B cells undergo a polyclonal activation which does not involve massive proliferation. This first phase of B-cell activation is T cell independent. Moreover, during the first phase of activation, when only a small fraction of B cells is infected by MMTV(SW), viral DNA is detected only in activated B cells. Such a B-cell activation is also seen after injection of murine leukemia virus but not after injection of vaccinia virus, despite the very similar kinetics and intensity of the immune response. Since retroviruses require activated target cells to induce efficient infection, these data suggest that the early polyclonal retrovirus-induced target cell activation might play an important role in the establishment of retroviral infections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RecA protein in bacteria and its eukaryotic homolog Rad51 protein are responsible for initiation of strand exchange between homologous DNA molecules. This process is crucial for homologous recombination, the repair of certain types of DNA damage and for the reinitiation of DNA replication on collapsed replication forks. We show here, using two different types of in vitro assays, that in the absence of ATP hydrolysis RecA-mediated strand exchange traverses small substitutional heterologies between the interacting DNAs, whereas small deletions or insertions block the ongoing strand exchange. We discuss evolutionary implications of RecA selectivity against insertions and deletions and propose a molecular mechanism by which RecA can exert this selectivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacteria must control the progression of their cell cycle in response to nutrient availability. This regulation can be mediated by guanosine tetra- or pentaphosphate [(p)ppGpp], which are synthesized by enzymes of the RelA/SpoT homologue (Rsh) family, particularly under starvation conditions. Here, we study the effects of (p)ppGpp on the cell cycle of Caulobacter crescentus, an oligotrophic bacterium with a dimorphic life cycle. C. crescentus divides asymmetrically, producing a motile swarmer cell that cannot replicate its chromosome and a sessile stalked cell that is replication competent. The swarmer cell rapidly differentiates into a stalked cell in appropriate conditions. An artificial increase in the levels of (p)ppGpp in nonstarved C. crescentus cells was achieved by expressing a truncated relA gene from Escherichia coli, encoding a constitutively active (p)ppGpp synthetase. By combining single-cell microscopy, flow cytometry approaches, and swarming assays, we show that an increase in the intracellular concentration of (p)ppGpp is sufficient to slow down the swarmer-to-stalked cell differentiation process and to delay the initiation of chromosome replication. We also present evidence that the intracellular levels of two master regulators of the cell cycle of C. crescentus, DnaA and CtrA, are modulated in response to (p)ppGpp accumulation, even in the absence of actual starvation. CtrA proteolysis and DnaA synthesis seem indirectly inhibited by (p)ppGpp accumulation. By extending the life span of the motile nonreproductive swarmer cell and thus promoting dispersal and foraging functions over multiplication under starvation conditions, (p)ppGpp may play a central role in the ecological adaptation of C. crescentus to nutritional stresses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nucleotide composition analyses of bacterial genomes such as cumulative GC skew highlight the atypical, strongly asymmetric architecture of the recently published chromosome of Idiomarina loihiensis L2TR, suggesting that an inversion of a 600-kb chromosomal segment occurred. The presence of 3.4-kb inverted repeated sequences at the borders of the putative rearrangement supports this hypothesis. Reverting in silico this segment restores (1) a symmetric chromosome architecture; (2) the co-orientation of transcription of all rRNA operons with DNA replication; and (3) a better conservation of gene order between this chromosome and other gamma-proteobacterial ones. Finally, long-range PCRs encompassing the ends of the 600-kb segment reveal the existence of the reverted configuration but not of the published one. This demonstrates how cumulative nucleotide-skew analyses can validate genome assemblies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DnaA is a conserved essential bacterial protein that acts as the initiator of chromosomal replication as well as a master transcriptional regulator in Caulobacter crescentus. Thus, the intracellular levels of active DnaA need to be tightly regulated during the cell cycle. Our previous work suggested that DnaA may be regulated at the level of its activity by the replisome-associated protein HdaA. Here, we describe the construction of a mutant DnaA protein [DnaA(R357A)]. The R357 residue in the AAA+ domain of the C. crescentus DnaA protein is equivalent to the R334 residue of the E. coli DnaA protein, which is required for the Regulatory Inactivation of DnaA (RIDA). We found that the expression of the DnaA(R357A) mutant protein in C. crescentus, but not the expression of the wild-type DnaA protein at similar levels, causes a severe phenotype of over-initiation of chromosomal replication and that it blocks cell division. Thus, the mutant DnaA(R357A) protein is hyper-active to promote the initiation of DNA replication, compared to the wild-type DnaA protein. DnaA(R357A) could not replace DnaA in vivo, indicating that the switch in DnaA activity once chromosomal replication has started may be an essential process in C. crescentus. We propose that the inactivation of DnaA is the main mechanism ensuring that chromosomal replication starts only once per cell cycle. We further observed that the R357A substitution in DnaA does not promote the activity of DnaA as a direct transcriptional activator of four important genes, encoding HdaA, the GcrA master cell cycle regulator, the FtsZ cell division protein and the MipZ spatial regulator of cell division. Thus, the AAA+ domain of DnaA may play a role in temporally regulating the bifunctionality of DnaA by reallocating DnaA molecules from initiating DNA replication to transcribing genes within the unique DnaA regulon of C. crescentus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La mousse haplobiontique Physcomitrella patens est utilisée comme système génétique modèle pour l'étude du développement des plantes. Cependant, l'absence d'un protocole efficace de transformation a constitué jusqu'à présent un gros désavantage méthodologique pour le développement futur de ce système expérimental. Les résultats présentés dans le premier chapitre relatent la mise au point d'un protocole de transformation basé sur la technique de transfert direct de gènes dans des protoplastes par précipitation au PEG. Un essai d'expression transitoire de gènes a été mis au point. Ce protocole a été adapté afin de permettre l'introduction in vivo d'anticorps dans des protoplastes. Le protocole modifié permet d'introduire simultanément du DNA et des IgG dans les cellules, et nous avons démontré que ces anticorps peuvent inactiver spécifiquement le produit d'un gène co-introduit (GUS), ainsi que certaines protéines impliquées dans des processus cellulaires (tubuline). Cet essai, baptisé "essai transitoire d'immuno-inactivation in vivo", devrait être directement applicable à d'autres protoplastes végétaux, et permettre l'élaboration de nouvelles stratégies dans l'étude de processus cellulaires. Le second chapitre est consacré aux expériences de transformation de la mousse avec des gènes conférant une résistance à des antibiotiques. Nos résultats démontrent que l'intégration de gènes de résistance dans le génome de P. patens est possible, mais que cet événement est rare. Il s'agit là néanmoins de la première démonstration d'une transformation génétique réussie de cet organisme. L'introduction de gènes de résistance aux antibiotiques dans les protoplastes de P. patens génère à haute fréquence des clones résistants instables. Deux classes de clones instables ont été identifiés. La caractérisation phénotypique, génétique et moléculaire de ces clones suggère fortement que les séquences transformantes sont concaténées pour former des structures de haut poids moléculaire, et que ces structures sont efficacement répliquées et maintenues dans les cellules résistantes en tant qu'éléments génétiques extrachromosomaux. Ce type de transformation nous permet d'envisager des expériences permettant l'identification des séquences génomiques impliquées dans la replication de l'ADN de mousse. Plusieurs lignées transgéniques ont été retransformées avec des plasmides portant des séquences homologues aux séquences intégrées dans le génome, mais conférant une résistance à un autre antibiotique. Les résultats présentés dans le troisième chapitre montrent que les fréquences de transformation intégrative dans les lignées transgéniques sont 10 fois plus élevées que dans la lignée sauvage, et que cette augmentation est associée à une coségrégation des gènes de résistance dans la plupart des clones testés. Ces résultats génétiques indiquent que l'intégration de séquences d'ADN étranger dans le génome de P. patens a lieu en moyenne 10 fois plus fréquemment par recombinaison homologue que par intégration aléatoire. Ce rapport homologue/aléatoire est 10000 fois supérieur aux rapports obtenus avec d'autres plantes, et fournit l'outil indispensable à la réalisation d'expériences de génétique inverse dans cet organisme à haplophase dominante. THESIS SUMMARY The moss Physcomitrella patens is used as a model genetic system to study plant development, taking advantage of the fact that the haploid gametophyte dominates in its life cycle. But further development of this model system was hampered by the lack of a protocol allowing the genetic transformation of this plant. We have developed a transformation protocol based on PEG-mediated direct gene transfer to protoplasts. Our data demonstrate that this procedure leads to the establishment of an efficient transient gene expression assay. A slightly modified protocol has been developed allowing the in vivo introduction of antibodies in moss protoplasts. Both DNA and IgGs can be loaded simultaneously, and specific antibodies can immunodeplete the product of an expression cassette (GUS) as well as proteins involved in cellular processes (tubulins). This assay, named transient in vivo immunodepletion assay, should be applicable to other plant protoplasts, and offers new approaches to study cellular processes. Transformations have been performed with bacterial plasmids carrying antibiotic resistance expression cassette. Our data demonstrate that integrative transformation occurs, but at low frequencies. This is the first demonstration of a successful genetic transformation of mosses. Resistant unstable colonies are recovered at high frequencies following transformation, and two different classes of unstable clones have been identified. Phenotypical, genetic and molecular characterisation of these clones strongly suggests that bacterial plasmids are concatenated to form high molecular arrays which are efficiently replicated and maintained as extrachromosomal elements in the resistant cells. Replicative transformation in P. patens should allow the design of experiments aimed at the identification of genomic sequences involved in moss DNA replication. Transgenic strains have been retransformed with bacterial plasmids carrying sequences homologous to the integrated transloci, but conferring resistance to another antibiotic. Our results demonstrate an order of magnitude increase of integrative transformation frequencies in transgenic strains as compared to wild-type, associated with cosegregation of the resistance genes in most of these double resistant transgenic strains. These observations provide strong genetic evidence that gene targeting occurs about ten times more often than random integration in the genome of P. patens. Such ratio of targeted to random integration is about 10 000 times higher than previous reports of gene targeting in plants, and provides the essential requirement for the development of efficient reverse genetics in the haplodiplobiontic P. patens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous γH2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the α-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-α primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genomic islands (GEIs) are large DNA segments, present in most bacterial genomes, that are most likely acquired via horizontal gene transfer. Here, we study the self-transfer system of the integrative and conjugative element ICEclc of Pseudomonas knackmussii B13, which stands model for a larger group of ICE/GEI with syntenic core gene organization. Functional screening revealed that unlike conjugative plasmids and other ICEs ICEclc carries two separate origins of transfer, with different sequence context but containing a similar repeat motif. Conjugation experiments with GFP-labelled ICEclc variants showed that both oriTs are used for transfer and with indistinguishable efficiencies, but that having two oriTs results in an estimated fourfold increase of ICEclc transfer rates in a population compared with having a single oriT. A gene for a relaxase essential for ICEclc transfer was also identified, but in vivo strand exchange assays suggested that the relaxase processes both oriTs in a different manner. This unique dual origin of transfer system might have provided an evolutionary advantage for distribution of ICE, a hypothesis that is supported by the fact that both oriT regions are conserved in several GEIs related to ICEclc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proteins disabled in Fanconi anemia (FA) are necessary for the maintenance of genome stability during cell proliferation. Upon replication stress signaling by ATR, the FA core complex monoubiquitinates FANCD2 and FANCI in order to activate DNA repair. Here, we identified FANCD2 and FANCI in a proteomic screen of replisome-associated factors bound to nascent DNA in response to replication arrest. We found that FANCD2 can interact directly with minichromosome maintenance (MCM) proteins. ATR signaling promoted the transient association of endogenous FANCD2 with the MCM2-MCM7 replicative helicase independently of FANCD2 monoubiquitination. FANCD2 was necessary for human primary cells to restrain DNA synthesis in the presence of a reduced pool of nucleotides and prevented the accumulation of single-stranded DNA, the induction of p21, and the entry of cells into senescence. These data reveal that FANCD2 is an effector of ATR signaling implicated in a general replisome surveillance mechanism that is necessary for sustaining cell proliferation and attenuating carcinogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The replication of circular DNA faces topological obstacles that need to be overcome to allow the complete duplication and separation of newly replicated molecules. Small bacterial plasmids provide a perfect model system to study the interplay between DNA helicases, polymerases, topoisomerases and the overall architecture of partially replicated molecules. Recent studies have shown that partially replicated circular molecules have an amazing ability to form various types of structures (supercoils, precatenanes, knots and catenanes) that help to accommodate the dynamic interplay between duplex unwinding at the replication fork and DNA unlinking by topoisomerases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several studies over the last few years have shown that newly arising (de novo) mutations contribute to the genetics of schizophrenia (SZ), autism (ASD) and other developmental disorders. The strongest evidence comes from studies of de novo Copy Number Variation (CNV), where the rate of new mutations is shown to be increased in cases when compared to controls [23, 24]. Research on de novo point mutations and small insertion-deletions (indels) has been more limited, but with the development of next-generation sequencing (NGS) technology, such studies are beginning to provide preliminary evidence that de novo single-nucleotide mutations (SNVs) might also increase risk of SZ and ASD [25, 26] Advanced paternal age is a major source of new mutations in human beings [27] and could thus be associated with increased risk for developing SZ, ASD or other developmental disorders. Indeed, advanced paternal age is found to be a risk factor for developing SZ and ASD in the offspring [28, 29] and new mutations related to advanced paternal age have been implicated as a cause of sporadic cases in several autosomal dominant diseases, some neurodevelopmental diseases, including SZ and ASD, and social functioning. New single-base substitutions occur at higher rates at males compared to females and this difference increases with paternal age. This is due to the fact that sperm cells go through a much higher number of cell divisions (~840 by the age of 50), which increases the risk for DNA copy errors in the male germ line [30] . By contrast, the female eggs (oocytes) undergo only 24 cell divisions and all but the last occur during foetal life. The aim of my project is to determine the parent-of-origin of de novo SNVs, using large samples of parent-offspring trios affected with schizophrenia (SZ). From whole exome sequencing of 618 Bulgarian proband-offspring trios affected, nearly 1000 de novo (SNVs or small indels) have been identified and from these, the parent-of-origin of at least 60% of the mutations (N=600) can be established. This project is contained in a main one that consists on the determination of the parental origin of different types of de novo mutations (SNVs, small indels and large CNVs).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RÉSUMÉ: Le génome de toute cellule est susceptible d'être attaqué par des agents endogènes et exogènes. Afin de préserver l'intégrité génomique, les cellules ont développé des multitudes de mécanismes. La réplication de l'ADN, une étape importante durant le cycle cellulaire, constitue un stress et présente un danger important pour l'intégrité du génome. L'anémie de Fanconi est une maladie héréditaire rare dont les protéines impliquées semblent jouer un rôle crucial dans la réponse au stress réplicatif. La maladie est associée à une instabilité chromosomique ainsi qu'à une forte probabilité de développer des cancers. Les cellules des patients souffrant de l'anémie de Fanconi sont sensibles à des agents interférant avec la réplication de l'ADN, et plus particulièrement àdes agents qui fient les deux brins d'ADN d'une manière covalente. L'anémie de Fanconi est une maladie génétiquement hétérogène. Treize protéines ont pu être identifiées. Elles semblent figurer dans une même voie de signalisation qui est aussi connue sous le nom de « FA/BRCA pathway », car un des gènes est identique au gène BRCA2 (breast cancer susceptibility gene 2). Huit protéines forment un complexe nucléaire dont l'intégrité est nécessaire à la monoubiquitination de deux autres protéines, FANCD2 et FANCI, en réponse à un stress réplicatif. A ce jour, la fonction moléculaire des protéines du « FA/BRCA pathway »reste encore mal décrite. Au début de mon travail de thèse, nous avons donc décidé de purifier les protéines du complexe nucléaire et d'étudier leurs propriétés biochimiques. Nous avons tout d'abord étudié les cinq protéines connues à l'époque qui sont FANCA, FANCC, FANCE, FANCF et FANCG. Par la suite, nous avons étendu notre étude à des protéines découvertes plus récemment, FANCL, FANCM et FAAP24, en concentrant finalement notre travail sur la caractérisation de FANCM. FANCM, contrairement aux autres protéines du complexe, est constituée de deux domaines conservés suggérant un rôle important dans le métabolisme de l'ADN. Il s'agit d'un domaine « DEAH box hélicase »situé dans la partie N-terminale et d'un domaine « ERCC4 nuclease »situé dans la partie C-terminale de la protéine. Dans cette étude, nous avons purifié avec succès la protéine FANCM entière à partir d'un système hétérologue. Nous montrons que FANCM s'attache de manière spécifique à des jonctions de Holliday et des fourches de réplication. De plus, nous démontrons que FANCM peut déplacer le point de jonction de ces structures via son domaine hélicase de manière dépendante de l'ATP. FANCM est aussi capable de dissocier de grands intermédiaires de la recombinaison, via la migration de jonctions de Holliday à travers une région d'homologie de 2.6 kb. Tous ces résultats suggèrent que FANCM peut s'attacher spécifiquement à des fourches de réplication et à des jonctions de Holliday in vitro et que son domaine hélicase est associé à une activité migratoire efficace. Nous pensons que FANCM peut avoir un rôle direct sur les intermédiaires de réplication. Ceci est en accord avec l'idée que les protéines de l'anémie de Fanconi coordonnent la réparation de l'ADN au niveau des fourches de réplication arrêtées. Nos résultats donnent une première indication quant au rôle de FANCM dans la cellule et peuvent contribuer à élucider la fonction de cette voie de signalisation peu comprise jusqu'à présent. SUMMARY: The genome of every cell is subject to a constant offence by endogenous and exogenous agents. Not surprisingly; cells have evolved a multitude of mechanisms which aim at preserving genomic integrity. A key step during the life cycle of a cell, DNA replication itself, constitutes a special danger to the integrity of the genome. The proteins defective in the rare hereditary disease Fanconi anemia (FA) are suspected to play a crucial role in the cellular response to DNA replication stress. The disease is associated with chromosomal instability and pronounced cancer susceptibility. Cells from Fanconi anemia patients are sensitive to a variety of agents which interfere with DNA replication, DNA interstrand cross-linking agents being particularly threatening to their survival. Fanconi anemia is a genetically heterogeneous disease with 13 different proteins identified, which seem to work together in a common pathway. Since one of the FA genes is identical to the breast cancer susceptibility gene BRCA2, it is also referred to as the FA/BRCA pathway. Eight proteins form a nuclear complex, whose integriry is required for the monoubiquitination of two other FA proteins, FANCD2 and FANCI, in response to DNA replication stress. Despite intensive research, the function of the FA/BRCA pathway at a molecular level has remained largely elusive so far. At the beginning of my thesis, we therefore decided to purify the proteins of the FA core complex and to investigate their biochemical properties. We started with the five proteins which were known at that time, FANCA, FANCC, FANCE, FANCF, and FACG. Later on, we extended our studies to the newly discovered proteins FANCL, FANCM, and FAAP24, and eventually focused our work on the characterisation of FANCM. In contrast to the other core complex proteins, FANCM contains two conserved domains, which point to a role in DNA metabolism: an N-terminal DEAH box helicase domain and a C-terminal ERCC4 nuclease domain. In this study, we have successfully purified full-length FANCM from a recombinant source. We show that purified FANCM binds to branched DNA molecules, such as Holliday junctions and replication forks, with high specificity and affinity. In addition, we demonstrate that FANCM can translocate the junction point of branched DNA molecules due to its helicase domain in an ATPase-dependent manner. FANCM can even dissociate large recombination intermediates, via branch migration of Holliday junctions through a 2.6 kb region of homology. Taken together, our data suggest that FANCM can specifically bind to replication forks and Holliday junctions in vitro, and that its DEAH box helicase domain is associated with a potent branch migration activity. We propose that FANCM might have a direct role in the processing of DNA replication intermediates. This is consistent with the current view that FA proteins coordinate DNA repair at stalled replication forks. Our findings provide a first hint as to the context in which FANCM might play a role in the cell. We are optimistic that they might be key to further elucidate the function of a pathway which is far from being understood.