854 resultados para Distributed system architecture


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Through the use of Cloud Foundry "stack" concept, a new isolation is provided to the application running on the PaaS. A new deployment feature that can easily scale on distributed system, both public and private clouds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Root-yield-1.06 is a major QTL affecting root system architecture (RSA) and other agronomic traits in maize. The effect of this QTL has been evaluated with the development of near isogenic lines (NILs) differing at the QTL position. The objective of this study was to fine map qroot-yield-1.06 by marker-assisted searching for chromosome recombinants in the QTL interval and concurrent root phenotyping in both controlled and field conditions, through successive generations. Complementary approaches such as QTL meta-analysis and RNA-seq were deployed in order to help prioritizing candidate genes within the QTL target region. Using a selected group of genotypes, field based root analysis by ‘shovelomics’ enabled to accurately collect RSA information of adult maize plants. Shovelomics combined with software-assisted root imaging analysis proved to be an informative and relatively highly automated phenotyping protocol. A QTL interval mapping was conducted using a segregating population at the seedling stage grown in controlled environment. Results enabled to narrow down the QTL interval and to identify new polymorphic markers for MAS in field experiments. A collection of homozygous recombinant NILs was developed by screening segregating populations with markers flanking qroot-yield-1.06. A first set of lines from this collection was phenotyped based on the adapted shovelomics protocol. QTL analysis based on these data highlighted an interval of 1.3 Mb as completely linked with the target QTL but, a larger safer interval of 4.1 Mb was selected for further investigations. QTL meta-analysis allows to synthetize information on root QTLs and two mQTLs were identified in the qroot-yield-1.06 interval. Trascriptomics analysis based on RNA-seq data of the two contrasting QTL-NILs, confirmed alternative haplotypes at chromosome bin 1.06. qroot-yield-1.06 has now been delimited to a 4.1-Mb interval, and thanks to the availability of additional untested homozygous recombinant NILs, the potentially achievable mapping resolution at qroot-yield-1.06 is c. 50 kb.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Durum wheat is the second most important wheat species worldwide and the most important crop in several Mediterranean countries including Italy. Durum wheat is primarily grown under rainfed conditions where episodes of drought and heat stress are major factors limiting grain yield. The research presented in this thesis aimed at the identification of traits and genes that underlie root system architecture (RSA) and tolerance to heat stress in durum wheat, in order to eventually contribute to the genetic improvement of this species. In the first two experiments we aimed at the identification of QTLs for root trait architecture at the seedling level by studying a bi-parental population of 176 recombinant inbred lines (from the cross Meridiano x Claudio) and a collection of 183 durum elite accessions. Forty-eight novel QTLs for RSA traits were identified in each of the two experiments, by means of linkage- and association mapping-based QTL analysis, respectively. Important QTLs controlling the angle of root growth in the seedling were identified. In a third experiment, we investigated the phenotypic variation of root anatomical traits by means of microscope-based analysis of root cross sections in 10 elite durum cultivars. The results showed the presence of sizeable genetic variation in aerenchyma-related traits, prompting for additional studies aimed at mapping the QTLs governing such variation and to test the role of aerenchyma in the adaptive response to abiotic stresses. In the fourth experiment, an association mapping experiment for cell membrane stability at the seedling stage (as a proxy trait for heat tolerance) was carried out by means of association mapping. A total of 34 QTLs (including five major ones), were detected. Our study provides information on QTLs for root architecture and heat tolerance which could potentially be considered in durum wheat breeding programs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Im Bereich sicherheitsrelevanter eingebetteter Systeme stellt sich der Designprozess von Anwendungen als sehr komplex dar. Entsprechend einer gegebenen Hardwarearchitektur lassen sich Steuergeräte aufrüsten, um alle bestehenden Prozesse und Signale pünktlich auszuführen. Die zeitlichen Anforderungen sind strikt und müssen in jeder periodischen Wiederkehr der Prozesse erfüllt sein, da die Sicherstellung der parallelen Ausführung von größter Bedeutung ist. Existierende Ansätze können schnell Designalternativen berechnen, aber sie gewährleisten nicht, dass die Kosten für die nötigen Hardwareänderungen minimal sind. Wir stellen einen Ansatz vor, der kostenminimale Lösungen für das Problem berechnet, die alle zeitlichen Bedingungen erfüllen. Unser Algorithmus verwendet Lineare Programmierung mit Spaltengenerierung, eingebettet in eine Baumstruktur, um untere und obere Schranken während des Optimierungsprozesses bereitzustellen. Die komplexen Randbedingungen zur Gewährleistung der periodischen Ausführung verlagern sich durch eine Zerlegung des Hauptproblems in unabhängige Unterprobleme, die als ganzzahlige lineare Programme formuliert sind. Sowohl die Analysen zur Prozessausführung als auch die Methoden zur Signalübertragung werden untersucht und linearisierte Darstellungen angegeben. Des Weiteren präsentieren wir eine neue Formulierung für die Ausführung mit fixierten Prioritäten, die zusätzlich Prozessantwortzeiten im schlimmsten anzunehmenden Fall berechnet, welche für Szenarien nötig sind, in denen zeitliche Bedingungen an Teilmengen von Prozessen und Signalen gegeben sind. Wir weisen die Anwendbarkeit unserer Methoden durch die Analyse von Instanzen nach, welche Prozessstrukturen aus realen Anwendungen enthalten. Unsere Ergebnisse zeigen, dass untere Schranken schnell berechnet werden können, um die Optimalität von heuristischen Lösungen zu beweisen. Wenn wir optimale Lösungen mit Antwortzeiten liefern, stellt sich unsere neue Formulierung in der Laufzeitanalyse vorteilhaft gegenüber anderen Ansätzen dar. Die besten Resultate werden mit einem hybriden Ansatz erzielt, der heuristische Startlösungen, eine Vorverarbeitung und eine heuristische mit einer kurzen nachfolgenden exakten Berechnungsphase verbindet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dall'inizio del nuovo millennio lo sviluppo di tecnologie nel campo del mobile computing, della rete internet, lo sviluppo dell'Internet of things e pure il cloud computing hanno reso possibile l'innovazione dei metodi di lavoro e collaborazione. L'evoluzione del mobile computing e della realtà aumentata che sta avvenendo in tempi più recenti apre potenzialmente nuovi orizzonti nello sviluppo di sistemi distribuiti collaborativi. Esistono oggi diversi framework a supporto della realtà aumentata, Wikitude, Metaio, Layar, ma l'interesse primario di queste librerie è quello di fornire una serie di API fondamentali per il rendering di immagini 3D attraverso i dispositivi, per lo studio dello spazio in cui inserire queste immagini e per il riconoscimento di marker. Questo tipo di funzionalità sono state un grande passo per quanto riguarda la Computer Graphics e la realtà aumentata chiaramente, però aprono la strada ad una Augmented Reality(AR) ancora più aumentata. Questa tesi si propone proprio di presentare l'ideazione, l'analisi, la progettazione e la prototipazione di un sistema distribuito situato a supporto della collaborazione basato su realtà aumentata. Lo studio di questa applicazione vuole mettere in luce molti aspetti innovativi e che ancora oggi non sono stati approfonditi né tanto meno sviluppati come API o forniti da librerie riguardo alla realtà aumentata e alle sue possibili applicazioni.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently, observations of space debris are primarily performed with ground-based sensors. These sensors have a detection limit at some centimetres diameter for objects in Low Earth Orbit (LEO) and at about two decimetres diameter for objects in Geostationary Orbit (GEO). The few space-based debris observations stem mainly from in-situ measurements and from the analysis of returned spacecraft surfaces. Both provide information about mostly sub-millimetre-sized debris particles. As a consequence the population of centimetre- and millimetre-sized debris objects remains poorly understood. The development, validation and improvement of debris reference models drive the need for measurements covering the whole diameter range. In 2003 the European Space Agency (ESA) initiated a study entitled “Space-Based Optical Observation of Space Debris”. The first tasks of the study were to define user requirements and to develop an observation strategy for a space-based instrument capable of observing uncatalogued millimetre-sized debris objects. Only passive optical observations were considered, focussing on mission concepts for the LEO, and GEO regions respectively. Starting from the requirements and the observation strategy, an instrument system architecture and an associated operations concept have been elaborated. The instrument system architecture covers the telescope, camera and onboard processing electronics. The proposed telescope is a folded Schmidt design, characterised by a 20 cm aperture and a large field of view of 6°. The camera design is based on the use of either a frame-transfer charge coupled device (CCD), or on a cooled hybrid sensor with fast read-out. A four megapixel sensor is foreseen. For the onboard processing, a scalable architecture has been selected. Performance simulations have been executed for the system as designed, focussing on the orbit determination of observed debris particles, and on the analysis of the object detection algorithms. In this paper we present some of the main results of the study. A short overview of the user requirements and observation strategy is given. The architectural design of the instrument is discussed, and the main tradeoffs are outlined. An insight into the results of the performance simulations is provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self-stabilization is a property of a distributed system such that, regardless of the legitimacy of its current state, the system behavior shall eventually reach a legitimate state and shall remain legitimate thereafter. The elegance of self-stabilization stems from the fact that it distinguishes distributed systems by a strong fault tolerance property against arbitrary state perturbations. The difficulty of designing and reasoning about self-stabilization has been witnessed by many researchers; most of the existing techniques for the verification and design of self-stabilization are either brute-force, or adopt manual approaches non-amenable to automation. In this dissertation, we first investigate the possibility of automatically designing self-stabilization through global state space exploration. In particular, we develop a set of heuristics for automating the addition of recovery actions to distributed protocols on various network topologies. Our heuristics equally exploit the computational power of a single workstation and the available parallelism on computer clusters. We obtain existing and new stabilizing solutions for classical protocols like maximal matching, ring coloring, mutual exclusion, leader election and agreement. Second, we consider a foundation for local reasoning about self-stabilization; i.e., study the global behavior of the distributed system by exploring the state space of just one of its components. It turns out that local reasoning about deadlocks and livelocks is possible for an interesting class of protocols whose proof of stabilization is otherwise complex. In particular, we provide necessary and sufficient conditions – verifiable in the local state space of every process – for global deadlock- and livelock-freedom of protocols on ring topologies. Local reasoning potentially circumvents two fundamental problems that complicate the automated design and verification of distributed protocols: (1) state explosion and (2) partial state information. Moreover, local proofs of convergence are independent of the number of processes in the network, thereby enabling our assertions about deadlocks and livelocks to apply on rings of arbitrary sizes without worrying about state explosion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three-dimensional flow visualization plays an essential role in many areas of science and engineering, such as aero- and hydro-dynamical systems which dominate various physical and natural phenomena. For popular methods such as the streamline visualization to be effective, they should capture the underlying flow features while facilitating user observation and understanding of the flow field in a clear manner. My research mainly focuses on the analysis and visualization of flow fields using various techniques, e.g. information-theoretic techniques and graph-based representations. Since the streamline visualization is a popular technique in flow field visualization, how to select good streamlines to capture flow patterns and how to pick good viewpoints to observe flow fields become critical. We treat streamline selection and viewpoint selection as symmetric problems and solve them simultaneously using the dual information channel [81]. To the best of my knowledge, this is the first attempt in flow visualization to combine these two selection problems in a unified approach. This work selects streamline in a view-independent manner and the selected streamlines will not change for all viewpoints. My another work [56] uses an information-theoretic approach to evaluate the importance of each streamline under various sample viewpoints and presents a solution for view-dependent streamline selection that guarantees coherent streamline update when the view changes gradually. When projecting 3D streamlines to 2D images for viewing, occlusion and clutter become inevitable. To address this challenge, we design FlowGraph [57, 58], a novel compound graph representation that organizes field line clusters and spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. We enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in the transformed space. Most viewpoint selection methods only consider the external viewpoints outside of the flow field. This will not convey a clear observation when the flow field is clutter on the boundary side. Therefore, we propose a new way to explore flow fields by selecting several internal viewpoints around the flow features inside of the flow field and then generating a B-Spline curve path traversing these viewpoints to provide users with closeup views of the flow field for detailed observation of hidden or occluded internal flow features [54]. This work is also extended to deal with unsteady flow fields. Besides flow field visualization, some other topics relevant to visualization also attract my attention. In iGraph [31], we leverage a distributed system along with a tiled display wall to provide users with high-resolution visual analytics of big image and text collections in real time. Developing pedagogical visualization tools forms my other research focus. Since most cryptography algorithms use sophisticated mathematics, it is difficult for beginners to understand both what the algorithm does and how the algorithm does that. Therefore, we develop a set of visualization tools to provide users with an intuitive way to learn and understand these algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For a microgrid with a high penetration level of renewable energy, energy storage use becomes more integral to the system performance due to the stochastic nature of most renewable energy sources. This thesis examines the use of droop control of an energy storage source in dc microgrids in order to optimize a global cost function. The approach involves using a multidimensional surface to determine the optimal droop parameters based on load and state of charge. The optimal surface is determined using knowledge of the system architecture and can be implemented with fully decentralized source controllers. The optimal surface control of the system is presented. Derivations of a cost function along with the implementation of the optimal control are included. Results were verified using a hardware-in-the-loop system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we propose the use of specific system architecture, based on mobile device, for navigation in urban environments. The aim of this work is to assess how virtual and augmented reality interface paradigms can provide enhanced location based services using real-time techniques in the context of these two different technologies. The virtual reality interface is based on faithful graphical representation of the localities of interest, coupled with sensory information on the location and orientation of the user, while the augmented reality interface uses computer vision techniques to capture patterns from the real environment and overlay additional way-finding information, aligned with real imagery, in real-time. The knowledge obtained from the evaluation of the virtual reality navigational experience has been used to inform the design of the augmented reality interface. Initial results of the user testing of the experimental augmented reality system for navigation are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mixed Reality (MR) aims to link virtual entities with the real world and has many applications such as military and medical domains [JBL+00, NFB07]. In many MR systems and more precisely in augmented scenes, one needs the application to render the virtual part accurately at the right time. To achieve this, such systems acquire data related to the real world from a set of sensors before rendering virtual entities. A suitable system architecture should minimize the delays to keep the overall system delay (also called end-to-end latency) within the requirements for real-time performance. In this context, we propose a compositional modeling framework for MR software architectures in order to specify, simulate and validate formally the time constraints of such systems. Our approach is first based on a functional decomposition of such systems into generic components. The obtained elements as well as their typical interactions give rise to generic representations in terms of timed automata. A whole system is then obtained as a composition of such defined components. To write specifications, a textual language named MIRELA (MIxed REality LAnguage) is proposed along with the corresponding compilation tools. The generated output contains timed automata in UPPAAL format for simulation and verification of time constraints. These automata may also be used to generate source code skeletons for an implementation on a MR platform. The approach is illustrated first on a small example. A realistic case study is also developed. It is modeled by several timed automata synchronizing through channels and including a large number of time constraints. Both systems have been simulated in UPPAAL and checked against the required behavioral properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vorträge und Präsentationen von der CampusSource Tagung am 25.04.2013 bei der FernUniversität in Hagen zu den Themen:Liferay, Lecture2Go, Hochschulapps, OERs-MOOCs, Open IDM, e-Identity, CampusSource White Paper Award

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The characteristics of moving sound sources have strong implications on the listener's distance perception and the estimation of velocity. Modifications of the typical sound emissions as they are currently occurring due to the tendency towards electromobility have an impact on the pedestrian's safety in road traffic. Thus, investigations of the relevant cues for velocity and distance perception of moving sound sources are not only of interest for the psychoacoustic community, but also for several applications, like e.g. virtual reality, noise pollution and safety aspects of road traffic. This article describes a series of psychoacoustic experiments in this field. Dichotic and diotic stimuli of a set of real-life recordings taken from a passing passenger car and a motorcycle were presented to test subjects who in turn were asked to determine the velocity of the object and its minimal distance from the listener. The results of these psychoacoustic experiments show that the estimated velocity is strongly linked to the object's distance. Furthermore, it could be shown that binaural cues contribute significantly to the perception of velocity. In a further experiment, it was shown that - independently of the type of the vehicle - the main parameter for distance determination is the maximum sound pressure level at the listener's position. The article suggests a system architecture for the adequate consideration of moving sound sources in virtual auditory environments. Virtual environments can thus be used to investigate the influence of new vehicle powertrain concepts and the related sound emissions of these vehicles on the pedestrians' ability to estimate the distance and velocity of moving objects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ausgehend von der typischen IT‐Infrastruktur für E‐Learning an Hochschulen auf der einen Seite sowie vom bisherigen Stand der Forschung zu Personal Learning Environments (PLEs) auf der anderen Seite zeigt dieser Beitrag auf, wie bestehende Werkzeuge bzw. Dienste zusammengeführt und für die Anforderungen der modernen, rechnergestützten Präsenzlehre aufbereitet werden können. Für diesen interdisziplinären Entwicklungsprozess bieten sowohl klassische Softwareentwicklungsverfahren als auch bestehende PLE‐Modelle wenig Hilfestellung an. Der Beitrag beschreibt die in einem campusweiten Projekt an der Universität Potsdam verfolgten Ansätze und die damit erzielten Ergebnisse. Dafür werden zunächst typische Lehr‐/Lern‐bzw. Kommunikations‐Szenarien identifiziert, aus denen Anforderungen an eine unterstützende Plattform abgeleitet werden. Dies führt zu einer umfassenden Sammlung zu berücksichtigender Dienste und deren Funktionen, die gemäß den Spezifika ihrer Nutzung in ein Gesamtsystem zu integrieren sind. Auf dieser Basis werden grundsätzliche Integrationsansätze und technische Details dieses Mash‐Ups in einer Gesamtschau aller relevanten Dienste betrachtet und in eine integrierende Systemarchitektur überführt. Deren konkrete Realisierung mit Hilfe der Portal‐Technologie Liferay wird dargestellt, wobei die eingangs definierten Szenarien aufgegriffen und exemplarisch vorgestellt werden. Ergänzende Anpassungen im Sinne einer personalisierbaren bzw. adaptiven Lern‐(und Arbeits‐)Umgebung werden ebenfalls unterstützt und kurz aufgezeigt.