978 resultados para Differentiable dynamical systems


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis was focused on theoretical models of synchronization to cortical dynamics as measured by magnetoencephalography (MEG). Dynamical systems theory was used in both identifying relevant variables for brain coordination and also in devising methods for their quantification. We presented a method for studying interactions of linear and chaotic neuronal sources using MEG beamforming techniques. We showed that such sources can be accurately reconstructed in terms of their location, temporal dynamics and possible interactions. Synchronization in low-dimensional nonlinear systems was studied to explore specific correlates of functional integration and segregation. In the case of interacting dissimilar systems, relevant coordination phenomena involved generalized and phase synchronization, which were often intermittent. Spatially-extended systems were then studied. For locally-coupled dissimilar systems, as in the case of cortical columns, clustering behaviour occurred. Synchronized clusters emerged at different frequencies and their boundaries were marked through oscillation death. The macroscopic mean field revealed sharp spectral peaks at the frequencies of the clusters and broader spectral drops at their boundaries. These results question existing models of Event Related Synchronization and Desynchronization. We re-examined the concept of the steady-state evoked response following an AM stimulus. We showed that very little variability in the AM following response could be accounted by system noise. We presented a methodology for detecting local and global nonlinear interactions from MEG data in order to account for residual variability. We found crosshemispheric nonlinear interactions of ongoing cortical rhythms concurrent with the stimulus and interactions of these rhythms with the following AM responses. Finally, we hypothesized that holistic spatial stimuli would be accompanied by the emergence of clusters in primary visual cortex resulting in frequency-specific MEG oscillations. Indeed, we found different frequency distributions in induced gamma oscillations for different spatial stimuli, which was suggestive of temporal coding of these spatial stimuli. Further, we addressed the bursting character of these oscillations, which was suggestive of intermittent nonlinear dynamics. However, we did not observe the characteristic-3/2 power-law scaling in the distribution of interburst intervals. Further, this distribution was only seldom significantly different to the one obtained in surrogate data, where nonlinear structure was destroyed. In conclusion, the work presented in this thesis suggests that advances in dynamical systems theory in conjunction with developments in magnetoencephalography may facilitate a mapping between levels of description int he brain. this may potentially represent a major advancement in neuroscience.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents the results from an investigation into the merits of analysing Magnetoencephalographic (MEG) data in the context of dynamical systems theory. MEG is the study of both the methods for the measurement of minute magnetic flux variations at the scalp, resulting from neuro-electric activity in the neocortex, as well as the techniques required to process and extract useful information from these measurements. As a result of its unique mode of action - by directly measuring neuronal activity via the resulting magnetic field fluctuations - MEG possesses a number of useful qualities which could potentially make it a powerful addition to any brain researcher's arsenal. Unfortunately, MEG research has so far failed to fulfil its early promise, being hindered in its progress by a variety of factors. Conventionally, the analysis of MEG has been dominated by the search for activity in certain spectral bands - the so-called alpha, delta, beta, etc that are commonly referred to in both academic and lay publications. Other efforts have centred upon generating optimal fits of "equivalent current dipoles" that best explain the observed field distribution. Many of these approaches carry the implicit assumption that the dynamics which result in the observed time series are linear. This is despite a variety of reasons which suggest that nonlinearity might be present in MEG recordings. By using methods that allow for nonlinear dynamics, the research described in this thesis avoids these restrictive linearity assumptions. A crucial concept underpinning this project is the belief that MEG recordings are mere observations of the evolution of the true underlying state, which is unobservable and is assumed to reflect some abstract brain cognitive state. Further, we maintain that it is unreasonable to expect these processes to be adequately described in the traditional way: as a linear sum of a large number of frequency generators. One of the main objectives of this thesis will be to prove that much more effective and powerful analysis of MEG can be achieved if one were to assume the presence of both linear and nonlinear characteristics from the outset. Our position is that the combined action of a relatively small number of these generators, coupled with external and dynamic noise sources, is more than sufficient to account for the complexity observed in the MEG recordings. Another problem that has plagued MEG researchers is the extremely low signal to noise ratios that are obtained. As the magnetic flux variations resulting from actual cortical processes can be extremely minute, the measuring devices used in MEG are, necessarily, extremely sensitive. The unfortunate side-effect of this is that even commonplace phenomena such as the earth's geomagnetic field can easily swamp signals of interest. This problem is commonly addressed by averaging over a large number of recordings. However, this has a number of notable drawbacks. In particular, it is difficult to synchronise high frequency activity which might be of interest, and often these signals will be cancelled out by the averaging process. Other problems that have been encountered are high costs and low portability of state-of-the- art multichannel machines. The result of this is that the use of MEG has, hitherto, been restricted to large institutions which are able to afford the high costs associated with the procurement and maintenance of these machines. In this project, we seek to address these issues by working almost exclusively with single channel, unaveraged MEG data. We demonstrate the applicability of a variety of methods originating from the fields of signal processing, dynamical systems, information theory and neural networks, to the analysis of MEG data. It is noteworthy that while modern signal processing tools such as independent component analysis, topographic maps and latent variable modelling have enjoyed extensive success in a variety of research areas from financial time series modelling to the analysis of sun spot activity, their use in MEG analysis has thus far been extremely limited. It is hoped that this work will help to remedy this oversight.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work introduces a Gaussian variational mean-field approximation for inference in dynamical systems which can be modeled by ordinary stochastic differential equations. This new approach allows one to express the variational free energy as a functional of the marginal moments of the approximating Gaussian process. A restriction of the moment equations to piecewise polynomial functions, over time, dramatically reduces the complexity of approximate inference for stochastic differential equation models and makes it comparable to that of discrete time hidden Markov models. The algorithm is demonstrated on state and parameter estimation for nonlinear problems with up to 1000 dimensional state vectors and compares the results empirically with various well-known inference methodologies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chaos control is a concept that recently acquiring more attention among the research community, concerning the fields of engineering, physics, chemistry, biology and mathematic. This paper presents a method to simultaneous control of deterministic chaos in several nonlinear dynamical systems. A radial basis function networks (RBFNs) has been used to control chaotic trajectories in the equilibrium points. Such neural network improves results, avoiding those problems that appear in other control methods, being also efficient dealing with a relatively small random dynamical noise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 93C83, 93C85, 68T40

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Kárnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Цветомир Цачев - В настоящия доклад се прави преглед на някои резултати от областта на оптималното управление на непрекъснатите хетерогенни системи, публикувани в периодичната научна литература в последните години. Една динамична система се нарича хетерогенна, ако всеки от нейните елементи има собствена динамиката. Тук разглеждаме оптимално управление на системи, чиято хетерогенност се описва с едномерен или двумерен параметър – на всяка стойност на параметъра отговаря съответен елемент на системата. Хетерогенните динамични системи се използват за моделиране на процеси в икономиката, епидемиологията, биологията, опазване на обществената сигурност (ограничаване на използването на наркотици) и др. Тук разглеждаме модел на оптимално инвестиране в образование на макроикономическо ниво [11], на ограничаване на последствията от разпространението на СПИН [9], на пазар на права за въглеродни емисии [3, 4] и на оптимален макроикономически растеж при повишаване на нивото на върховите технологии [1]. Ключови думи: оптимално управление, непрекъснати хетерогенни динамични системи, приложения в икономиката и епидемиолегията

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rolling Isolation Systems provide a simple and effective means for protecting components from horizontal floor vibrations. In these systems a platform rolls on four steel balls which, in turn, rest within shallow bowls. The trajectories of the balls is uniquely determined by the horizontal and rotational velocity components of the rolling platform, and thus provides nonholonomic constraints. In general, the bowls are not parabolic, so the potential energy function of this system is not quadratic. This thesis presents the application of Gauss's Principle of Least Constraint to the modeling of rolling isolation platforms. The equations of motion are described in terms of a redundant set of constrained coordinates. Coordinate accelerations are uniquely determined at any point in time via Gauss's Principle by solving a linearly constrained quadratic minimization. In the absence of any modeled damping, the equations of motion conserve energy. This mathematical model is then used to find the bowl profile that minimizes response acceleration subject to displacement constraint.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Second order matrix equations arise in the description of real dynamical systems. Traditional modal control approaches utilise the eigenvectors of the undamped system to diagonalise the system matrices. A regrettable consequence of this approach is the discarding of residual o-diagonal terms in the modal damping matrix. This has particular importance for systems containing skew-symmetry in the damping matrix which is entirely discarded in the modal damping matrix. In this paper a method to utilise modal control using the decoupled second order matrix equations involving nonclassical damping is proposed. An example of modal control sucessfully applied to a rotating system is presented in which the system damping matrix contains skew-symmetric components.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Second order matrix equations arise in the description of real dynamical systems. Traditional modal control approaches utilise the eigenvectors of the undamped system to diagonalise the system matrices. A regrettable consequence of this approach is the discarding of residual off-diagonal terms in the modal damping matrix. This has particular importance for systems containing skew-symmetry in the damping matrix which is entirely discarded in the modal damping matrix. In this paper a method to utilise modal control using the decoupled second order matrix equations involving non-classical damping is proposed. An example of modal control successfully applied to a rotating system is presented in which the system damping matrix contains skew-symmetric components.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider piecewise defined differential dynamical systems which can be analysed through symbolic dynamics and transition matrices. We have a continuous regime, where the time flow is characterized by an ordinary differential equation (ODE) which has explicit solutions, and the singular regime, where the time flow is characterized by an appropriate transformation. The symbolic codification is given through the association of a symbol for each distinct regular system and singular system. The transition matrices are then determined as linear approximations to the symbolic dynamics. We analyse the dependence on initial conditions, parameter variation and the occurrence of global strange attractors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Il primo modello matematico in grado di descrivere il prototipo di un sistema eccitabile assimilabile ad un neurone fu sviluppato da R. FitzHugh e J. Nagumo nel 1961. Tale modello, per quanto schematico, rappresenta un importante punto di partenza per la ricerca nell'ambito neuroscientifico delle dinamiche neuronali, ed è infatti capostipite di una serie di lavori che hanno puntato a migliorare l’accuratezza e la predicibilità dei modelli matematici per le scienze. L’elevato grado di complessità nello studio dei neuroni e delle dinamiche inter-neuronali comporta, tuttavia, che molte delle caratteristiche e delle potenzialità dell’ambito non siano ancora state comprese appieno. In questo lavoro verrà approfondito un modello ispirato al lavoro originale di FitzHugh e Nagumo. Tale modello presenta l’introduzione di un termine di self-coupling con ritardo temporale nel sistema di equazioni differenziali, diventa dunque rappresentativo di modelli di campo medio in grado di descrivere gli stati macroscopici di un ensemble di neuroni. L'introduzione del ritardo è funzionale ad una descrizione più realistica dei sistemi neuronali, e produce una dinamica più ricca e complessa rispetto a quella presente nella versione originale del modello. Sarà mostrata l'esistenza di una soluzione a ciclo limite nel modello che comprende il termine di ritardo temporale, ove tale soluzione non può essere interpretata nell’ambito delle biforcazioni di Hopf. Allo scopo di esplorare alcune delle caratteristiche basilari della modellizzazione del neurone, verrà principalmente utilizzata l’impostazione della teoria dei sistemi dinamici, integrando dove necessario con alcune nozioni provenienti dall’ambito fisiologico. In conclusione sarà riportata una sezione di approfondimento sulla integrazione numerica delle equazioni differenziali con ritardo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate synchronization in a Kuramoto-like model with nearest neighbor coupling. Upon analyzing the behavior of individual oscillators at the onset of complete synchronization, we show that the time interval between bursts in the time dependence of the frequencies of the oscillators exhibits universal scaling and blows up at the critical coupling strength. We also bring out a key mechanism that leads to phase locking. Finally, we deduce forms for the phases and frequencies at the onset of complete synchronization.