960 resultados para Day-of-the-Week Effect


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present research examined the influences of the halo effect and the similar-tome effect on physical and sexual attractiveness for hiring decisions. It was hypothesized that the halo effect would cause applicants rated highly in physical and sexual attractiveness to receive higher ratings of hireability than unattractive applicants.However, if the similar-to-me effect is influential for levels of attractiveness in hiring situations, participants who rated themselves as less attractive should favor unattractive applicants. The results did not show an interaction between participant self-ratings and ratings of hireability, indicating the similar-to-me effect does not apply to physical or sexual attractiveness. There was a main effect of sexual attractiveness of the applicant forhireability, showing support for the halo effect. This effect was only found for White applicants, potentially due to in-group bias and out-group homogeneity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A growing number of drugs have been shown to prolong cardiac repolarization, predisposing individuals to life-threatening ventricular arrhythmias known as Torsades de Pointes. Most of these drugs are known to interfere with the human ether à-gogo related gene 1 (hERG1) channel, whose current is one of the main determinants of action potential duration. Prolonged repolarization is reflected by lengthening of the QT interval of the electrocardiogram, as seen in the suitably named drug-induced long QT syndrome. Chirality (presence of an asymmetric atom) is a common feature of marketed drugs, which can therefore exist in at least two enantiomers with distinct three-dimensional structures and possibly distinct biological fates. Both the pharmacokinetic and pharmacodynamic properties can differ between enantiomers, as well as also between individuals who take the drug due to metabolic polymorphisms. Despite the large number of reports about drugs reducing the hERG1 current, potential stereoselective contributions have only been scarcely investigated. In this review, we present a non-exhaustive list of clinically important molecules which display chiral toxicity that may be related to hERG1-blocking properties. We particularly focus on methadone cardiotoxicity, which illustrates the importance of the stereoselective effect of drug chirality as well as individual variations resulting from pharmacogenetics. Furthermore, it seems likely that, during drug development, consideration of chirality in lead optimization and systematic assessment of the hERG1 current block with all enantiomers could contribute to the reduction of the risk of drug-induced LQTS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is commonly assumed that an object capable of satisfying a need will be perceived as subjectively more valuable as the need for it intensifies. For example, the more active the need to eat, the more valuable food will become. This outcome could be called a valuation effect. In this article, we suggest a second basic influence of needs on evaluations: that activating a focal need (e.g., to eat) makes objects unrelated to that need (e.g., shampoo) less valuable, an outcome we refer to as the devaluation effect. Two existing studies support the existence of a devaluation effect using manipulations of the need to eat and to smoke and measuring attractiveness of consumer products and willingness to purchase raffle tickets. Furthermore, the evidence suggests that consumers are not aware of the devaluation effect and its influence on their preferences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: We previously identified ebpR, encoding a potential member of the AtxA/Mga transcriptional regulator family, and showed that it is important for transcriptional activation of the Enterococcus faecalis endocarditis and biofilm associated pilus operon, ebpABC. Although ebpR is not absolutely essential for ebpABC expression (100-fold reduction), its deletion led to phenotypes similar to those of an ebpABC mutant such as absence of pili at the cell surface and, consequently, reduced biofilm formation. A non-piliated ebpABC mutant has been shown to be attenuated in a rat model of endocarditis and in a murine urinary tract infection model, indicating an important participation of the ebpR-ebpABC locus in virulence. However, there is no report relating to the environmental conditions that affect expression of the ebpR-ebpABC locus. RESULTS: In this study, we examined the effect of CO2/HCO3(-), pH, and the Fsr system on the ebpR-ebpABC locus expression. The presence of 5% CO2/0.1 M HCO3(-) increased ebpR-ebpABC expression, while the Fsr system was confirmed to be a weak repressor of this locus. The mechanism by which the Fsr system repressed the ebpR-ebpABC locus expression appears independent of the effects of CO2(-) bicarbonate. Furthermore, by using an ebpA::lacZ fusion as a reporter, we showed that addition of 0.1 M sodium bicarbonate to TSBG (buffered at pH 7.5), but not the presence of 5% CO2, induced ebpA expression in TSBG broth. In addition, using microarray analysis, we found 73 genes affected by the presence of sodium bicarbonate (abs(fold) > 2, P < 0.05), the majority of which belong to the PTS system and ABC transporter families. Finally, pilus production correlated with ebpA mRNA levels under the conditions tested. CONCLUSIONS: This study reports that the ebp locus expression is enhanced by the presence of bicarbonate with a consequential increase in the number of cells producing pili. Although the molecular basis of the bicarbonate effect remains unclear, the pathway is independent of the Fsr system. In conclusion, E. faecalis joins the growing family of pathogens that regulates virulence gene expression in response to bicarbonate and/or CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Damage of the colorectum is the dose-limiting normal tissue complication following radiotherapy of prostate and cervical cancers. One approach for decreasing complications is to physically reduce the treatment volume. Mathematical models have been previously developed to describe the change in associated toxicity with a change in irradiated volume, i.e. the "volume effect", for serial-type normal tissues including the colorectum. The first goal of this thesis was to test the hypothesis that there would not be a threshold length in the development of obstruction after irradiation of mouse colorectum, as predicted by the Probability model of the volume effect. The second goal was to examine if there were differences in the threshold and in the incidence of colorectal obstruction after irradiation of two mouse strains, C57B1/6 (C57) and C3Hf/Kam (C3H), previously found to be fibrosis-prone and-resistant, respectively, after lung irradiation due, in part, to genetic differences. The hypothesis examined was that differences in incidence between strains were due to the differential expression of the fibrogenic cytokines $\rm TGF\beta$ and $\rm TNF\alpha.$ Various lengths of C57 and C3H mouse colorectum were irradiated and the incidence of colorectal obstruction was followed up to 15 months. A threshold length was observed for both mouse strains, in contradiction of model predictions. The mechanism of the threshold was epithelial regeneration after irradiation. C57 mice had significantly higher incidence of colorectal obstruction compared to C3H mice, especially at smaller irradiated lengths. Colorectal tissue was obtained at various times after irradiation and prepared for histology, immunohistochemistry and RNase protection assay for measurement of $\rm TGF\beta 1,$ 2, 3 and $\rm TNF\alpha$ mRNA. Distinct strain differences in the histological time of appearance and spatial locations of fibrosis were observed. However, there were no consistent strain difference in mRNA levels or immunolocalization for any of the cytokines examined. The data indicate the need for volume effect models that account for biologically important processes, such as the effect of epithelial regeneration after irradiation. As well, changes in fibrogenic cytokines at the mRNA level do not contribute to the strain difference in radiation-induced colorectal obstruction. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the generality and temporal endurance of the bivalency effect in task switching. This effect refers to the slowing on univalent stimuli that occurs when bivalent stimuli appear occasionally. We used a paradigm involving predictable switches between 3 simple tasks, with bivalent stimuli occasionally occurring on one of the tasks. The generality of the bivalency effect was investigated by using different tasks and different types of bivalent stimuli, and the endurance of this effect was investigated across different intertrial intervals (ITIs) and across the univalent trials that followed trials with bivalent stimuli. In 3 experiments, the results showed a general, robust, and enduring bivalency effect for all ITI conditions. Although the effect declined across trials, it remained significant for about 4 trials following one with a bivalent stimulus. Our findings emphasise the importance of top–down processes in task-switching performance. (PsycINFO Database Record (c) 2012 APA, all rights reserved)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aging societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the bone hierarchical organization. A good understanding has been reached for elastic properties on several length scales, but up to now there is a lack of reliable postyield data on the lower length scales. In order to be able to describe the behavior of bone at the microscale, an anisotropic elastic-viscoplastic damage model was developed using an eccentric generalized Hill criterion and nonlinear isotropic hardening. The model was implemented as a user subroutine in Abaqus and verified using single element tests. A FE simulation of microindentation in lamellar bone was finally performed show-ing that the new constitutive model can capture the main characteristics of the indentation response of bone. As the generalized Hill criterion is limited to elliptical and cylindrical yield surfaces and the correct shape for bone is not known, a new yield surface was developed that takes any convex quadratic shape. The main advantage is that in the case of material identification the shape of the yield surface does not have to be anticipated but a minimization results in the optimal shape among all convex quadrics. The generality of the formulation was demonstrated by showing its degeneration to classical yield surfaces. Also, existing yield criteria for bone at multiple length scales were converted to the quadric formulation. Then, a computational study to determine the influence of yield surface shape and damage on the in-dentation response of bone using spherical and conical tips was performed. The constitutive model was adapted to the quadric criterion and yield surface shape and critical damage were varied. They were shown to have a major impact on the indentation curves. Their influence on indentation modulus, hardness, their ratio as well as the elastic to total work ratio were found to be very well described by multilinear regressions for both tip shapes. For conical tips, indentation depth was not a significant fac-tor, while for spherical tips damage was insignificant. All inverse methods based on microindentation suffer from a lack of uniqueness of the found material properties in the case of nonlinear material behavior. Therefore, monotonic and cyclic micropillar com-pression tests in a scanning electron microscope allowing a straightforward interpretation comple-mented by microindentation and macroscopic uniaxial compression tests were performed on dry ovine bone to identify modulus, yield stress, plastic deformation, damage accumulation and failure mecha-nisms. While the elastic properties were highly consistent, the postyield deformation and failure mech-anisms differed between the two length scales. A majority of the micropillars showed a ductile behavior with strain hardening until failure by localization in a slip plane, while the macroscopic samples failed in a quasi-brittle fashion with microcracks coalescing into macroscopic failure surfaces. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behavior of bone at the microscale to a quasi-brittle response driven by the growth of preexisting cracks along interfaces or in the vicinity of pores at the macroscale. Subsequently, a study was undertaken to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topography measured by AFM. Statistical shape modeling of the residual imprint allowed to define a mean shape and describe the variability with 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was highly consistent and free of any pile up. A few of the topological parameters, in particular depth, showed significant correlations to variations in mechanical properties, but the cor-relations were not very strong or consistent. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small de-viations from the ideal case. As the uniaxial properties measured by micropillar compression are in conflict with the current literature on bone indentation, another dissipative mechanism has to be present. The elastic-viscoplastic damage model was therefore extended to viscoelasticity. The viscoelastic properties were identified from macroscopic experiments, while the quasistatic postelastic properties were extracted from micropillar data. It was found that viscoelasticity governed by macroscale properties has very little influence on the indentation curve and results in a clear underestimation of the creep deformation. Adding viscoplasticity leads to increased creep, but hardness is still highly overestimated. It was possible to obtain a reasonable fit with experimental indentation curves for both Berkovich and spherical indenta-tion when abandoning the assumption of shear strength being governed by an isotropy condition. These results remain to be verified by independent tests probing the micromechanical strength prop-erties in tension and shear. In conclusion, in this thesis several tools were developed to describe the complex behavior of bone on the microscale and experiments were performed to identify its material properties. Micropillar com-pression highlighted a size effect in bone due to the presence of preexisting cracks and pores or inter-faces like cement lines. It was possible to get a reasonable fit between experimental indentation curves using different tips and simulations using the constitutive model and uniaxial properties measured by micropillar compression. Additional experimental work is necessary to identify the exact nature of the size effect and the mechanical role of interfaces in bone. Deciphering the micromechanical behavior of lamellar bone and its evolution with age, disease and treatment and its failure mechanisms on several length scales will help preventing fractures in the elderly in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES Sensorineural hearing loss from sound overexposure has a considerable prevalence. Identification of sound hazards is crucial, as prevention, due to a lack of definitive therapies, is the sole alternative to hearing aids. One subjectively loud, yet little studied, potential sound hazard is movie theaters. This study uses smart phones to evaluate their applicability as a widely available, validated sound pressure level (SPL) meter. Therefore, this study measures sound levels in movie theaters to determine whether sound levels exceed safe occupational noise exposure limits and whether sound levels in movie theaters differ as a function of movie, movie theater, presentation time, and seat location within the theater. DESIGN Six smart phones with an SPL meter software application were calibrated with a precision SPL meter and validated as an SPL meter. Additionally, three different smart phone generations were measured in comparison to an integrating SPL meter. Two different movies, an action movie and a children's movie, were measured six times each in 10 different venues (n = 117). To maximize representativeness, movies were selected focusing on large release productions with probable high attendance. Movie theaters were selected in the San Francisco, CA, area based on whether they screened both chosen movies and to represent the largest variety of theater proprietors. Measurements were analyzed in regard to differences between theaters, location within the theater, movie, as well as presentation time and day as indirect indicator of film attendance. RESULTS The smart phone measurements demonstrated high accuracy and reliability. Overall, sound levels in movie theaters do not exceed safe exposure limits by occupational standards. Sound levels vary significantly across theaters and demonstrated statistically significant higher sound levels and exposures in the action movie compared to the children's movie. Sound levels decrease with distance from the screen. However, no influence on time of day or day of the week as indirect indicator of film attendance could be found. CONCLUSIONS Calibrated smart phones with an appropriate software application as used in this study can be utilized as a validated SPL meter. Because of the wide availability, smart phones in combination with the software application can provide high quantity recreational sound exposure measurements, which can facilitate the identification of potential noise hazards. Sound levels in movie theaters decrease with distance to the screen, but do not exceed safe occupational noise exposure limits. Additionally, there are significant differences in sound levels across movie theaters and movies, but not in presentation time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Bell, Marcus, and Goodlad (2013) recently conducted a meta-analysis of randomized controlled additive trials and found that adding an additional component to an existing treatment vis-à-vis the existing treatment produced larger effect sizes on targeted outcomes at 6-months follow-up than at termination, an effect they labeled as a sleeper effect. One of the limitations with Bell et al.'s detection of the sleeper effect was that they did not conduct a statistical test of the size of the effect at follow-up versus termination. METHOD: To statistically test if the differences of effect sizes between the additive conditions and the control conditions at follow-up differed from those at termination, we used a restricted maximum-likelihood random-effect model with known variances to conduct a multilevel longitudinal meta-analysis (k = 30). RESULTS: Although the small effects at termination detected by Bell et al. were replicated (ds = 0.17-0.23), none of the analyses of growth from termination to follow-up produced statistically significant effects (ds < 0.08; p > .20), and when asymmetry was considered using trim-and-fill procedure or the studies after 2000 were analyzed, magnitude of the sleeper effect was negligible (d = 0.00). CONCLUSION: There is no empirical evidence to support the sleeper effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a multi-level stakeholder approach the international level is of primordial importance not only in terms of legal frameworks, but also in terms of scientific analysis of the needs, options and constraints, as well as related to monitoring and evaluation systems. The Working Group on 'International Actions for the Sustainable Use of Soils' (IASUS) of the International Union of Soil Science (IUSS) identified a number of issues and measures in preparation of the 17thWorld Congress of Soil Science held in Bangkok, Thailand, in August 2002, and prepared a resolution in support of a 'global agenda for the sustainable use of soils', which was adopted on 21st August 2002 on the closing day of the congress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En la actualidad existe un gran conocimiento en la caracterización de rellenos hidráulicos, tanto en su caracterización estática, como dinámica. Sin embargo, son escasos en la literatura estudios más generales y globales de estos materiales, muy relacionados con sus usos y principales problemáticas en obras portuarias y mineras. Los procedimientos semi‐empíricos para la evaluación del efecto silo en las celdas de cajones portuarios, así como para el potencial de licuefacción de estos suelos durantes cargas instantáneas y terremotos, se basan en estudios donde la influencia de los parámetros que los rigen no se conocen en gran medida, dando lugar a resultados con considerable dispersión. Este es el caso, por ejemplo, de los daños notificados por el grupo de investigación del Puerto de Barcelona, la rotura de los cajones portuarios en el Puerto de Barcelona en 2007. Por estos motivos y otros, se ha decidido desarrollar un análisis para la evaluación de estos problemas mediante la propuesta de una metodología teórico‐numérica y empírica. El enfoque teórico‐numérico desarrollado en el presente estudio se centra en la determinación del marco teórico y las herramientas numéricas capaces de solventar los retos que presentan estos problemas. La complejidad del problema procede de varios aspectos fundamentales: el comportamiento no lineal de los suelos poco confinados o flojos en procesos de consolidación por preso propio; su alto potencial de licuefacción; la caracterización hidromecánica de los contactos entre estructuras y suelo (camino preferencial para el flujo de agua y consolidación lateral); el punto de partida de los problemas con un estado de tensiones efectivas prácticamente nulo. En cuanto al enfoque experimental, se ha propuesto una metodología de laboratorio muy sencilla para la caracterización hidromecánica del suelo y las interfaces, sin la necesidad de usar complejos aparatos de laboratorio o procedimientos excesivamente complicados. Este trabajo incluye por tanto un breve repaso a los aspectos relacionados con la ejecución de los rellenos hidráulicos, sus usos principales y los fenómenos relacionados, con el fin de establecer un punto de partida para el presente estudio. Este repaso abarca desde la evolución de las ecuaciones de consolidación tradicionales (Terzaghi, 1943), (Gibson, English & Hussey, 1967) y las metodologías de cálculo (Townsend & McVay, 1990) (Fredlund, Donaldson and Gitirana, 2009) hasta las contribuciones en relación al efecto silo (Ranssen, 1985) (Ravenet, 1977) y sobre el fenómeno de la licuefacción (Casagrande, 1936) (Castro, 1969) (Been & Jefferies, 1985) (Pastor & Zienkiewicz, 1986). Con motivo de este estudio se ha desarrollado exclusivamente un código basado en el método de los elementos finitos (MEF) empleando el programa MATLAB. Para ello, se ha esablecido un marco teórico (Biot, 1941) (Zienkiewicz & Shiomi, 1984) (Segura & Caron, 2004) y numérico (Zienkiewicz & Taylor, 1989) (Huerta & Rodríguez, 1992) (Segura & Carol, 2008) para resolver problemas de consolidación multidimensional con condiciones de contorno friccionales, y los correspondientes modelos constitutivos (Pastor & Zienkiewicz, 1986) (Fiu & Liu, 2011). Asimismo, se ha desarrollado una metodología experimental a través de una serie de ensayos de laboratorio para la calibración de los modelos constitutivos y de la caracterización de parámetros índice y de flujo (Castro, 1969) (Bahda 1997) (Been & Jefferies, 2006). Para ello se han empleado arenas de Hostun como material (relleno hidráulico) de referencia. Como principal aportación se incluyen una serie de nuevos ensayos de corte directo para la caracterización hidromecánica de la interfaz suelo – estructura de hormigón, para diferentes tipos de encofrados y rugosidades. Finalmente, se han diseñado una serie de algoritmos específicos para la resolución del set de ecuaciones diferenciales de gobierno que definen este problema. Estos algoritmos son de gran importancia en este problema para tratar el procesamiento transitorio de la consolidación de los rellenos hidráulicos, y de otros efectos relacionados con su implementación en celdas de cajones, como el efecto silo y la licuefacciones autoinducida. Para ello, se ha establecido un modelo 2D axisimétrico, con formulación acoplada u‐p para elementos continuos y elementos interfaz (de espesor cero), que tratan de simular las condiciones de estos rellenos hidráulicos cuando se colocan en las celdas portuarias. Este caso de estudio hace referencia clara a materiales granulares en estado inicial muy suelto y con escasas tensiones efectivas, es decir, con prácticamente todas las sobrepresiones ocasionadas por el proceso de autoconsolidación (por peso propio). Por todo ello se requiere de algoritmos numéricos específicos, así como de modelos constitutivos particulares, para los elementos del continuo y para los elementos interfaz. En el caso de la simulación de diferentes procedimientos de puesta en obra de los rellenos se ha requerido la modificacion de los algoritmos empleados para poder así representar numéricamente la puesta en obra de estos materiales, además de poder realizar una comparativa de los resultados para los distintos procedimientos. La constante actualización de los parámetros del suelo, hace también de este algoritmo una potente herramienta que permite establecer un interesante juego de perfiles de variables, tales como la densidad, el índice de huecos, la fracción de sólidos, el exceso de presiones, y tensiones y deformaciones. En definitiva, el modelo otorga un mejor entendimiento del efecto silo, término comúnmente usado para definir el fenómeno transitorio del gradiente de presiones laterales en las estructuras de contención en forma de silo. Finalmente se incluyen una serie de comparativas entre los resultados del modelo y de diferentes estudios de la literatura técnica, tanto para el fenómeno de las consolidaciones por preso propio (Fredlund, Donaldson & Gitirana, 2009) como para el estudio del efecto silo (Puertos del Estado, 2006, EuroCódigo (2006), Japan Tech, Stands. (2009), etc.). Para concluir, se propone el diseño de un prototipo de columna de decantación con paredes friccionales, como principal propuesta de futura línea de investigación. Wide research is nowadays available on the characterization of hydraulic fills in terms of either static or dynamic behavior. However, reported comprehensive analyses of these soils when meant for port or mining works are scarce. Moreover, the semi‐empirical procedures for assessing the silo effect on cells in floating caissons, and the liquefaction potential of these soils during sudden loads or earthquakes are based on studies where the underlying influence parameters are not well known, yielding results with significant scatter. This is the case, for instance, of hazards reported by the Barcelona Liquefaction working group, with the failure of harbor walls in 2007. By virtue of this, a complex approach has been undertaken to evaluate the problem by a proposal of numerical and laboratory methodology. Within a theoretical and numerical scope, the study is focused on the numerical tools capable to face the different challenges of this problem. The complexity is manifold; the highly non‐linear behavior of consolidating soft soils; their potentially liquefactable nature, the significance of the hydromechanics of the soil‐structure contact, the discontinuities as preferential paths for water flow, setting “negligible” effective stresses as initial conditions. Within an experimental scope, a straightforward laboratory methodology is introduced for the hydromechanical characterization of the soil and the interface without the need of complex laboratory devices or cumbersome procedures. Therefore, this study includes a brief overview of the hydraulic filling execution, main uses (land reclamation, filled cells, tailing dams, etc.) and the underlying phenomena (self‐weight consolidation, silo effect, liquefaction, etc.). It comprises from the evolution of the traditional consolidation equations (Terzaghi, 1943), (Gibson, English, & Hussey, 1967) and solving methodologies (Townsend & McVay, 1990) (Fredlund, Donaldson and Gitirana, 2009) to the contributions in terms of silo effect (Ranssen, 1895) (Ravenet, 1977) and liquefaction phenomena (Casagrande, 1936) (Castro, 1969) (Been & Jefferies, 1985) (Pastor & Zienkiewicz, 1986). The novelty of the study lies on the development of a Finite Element Method (FEM) code, exclusively formulated for this problem. Subsequently, a theoretical (Biot, 1941) (Zienkiewicz and Shiomi, 1984) (Segura and Carol, 2004) and numerical approach (Zienkiewicz and Taylor, 1989) (Huerta, A. & Rodriguez, A., 1992) (Segura, J.M. & Carol, I., 2008) is introduced for multidimensional consolidation problems with frictional contacts and the corresponding constitutive models (Pastor & Zienkiewicz, 1986) (Fu & Liu, 2011). An experimental methodology is presented for the laboratory test and material characterization (Castro 1969) (Bahda 1997) (Been & Jefferies 2006) using Hostun sands as reference hydraulic fill. A series of singular interaction shear tests for the interface calibration is included. Finally, a specific model algorithm for the solution of the set of differential equations governing the problem is presented. The process of consolidation and settlements involves a comprehensive simulation of the transient process of decantation and the build‐up of the silo effect in cells and certain phenomena related to self‐compaction and liquefaction. For this, an implementation of a 2D axi‐syimmetric coupled model with continuum and interface elements, aimed at simulating conditions and self‐weight consolidation of hydraulic fills once placed into floating caisson cells or close to retaining structures. This basically concerns a loose granular soil with a negligible initial effective stress level at the onset of the process. The implementation requires a specific numerical algorithm as well as specific constitutive models for both the continuum and the interface elements. The simulation of implementation procedures for the fills has required the modification of the algorithm so that a numerical representation of these procedures is carried out. A comparison of the results for the different procedures is interesting for the global analysis. Furthermore, the continuous updating of the model provides an insightful logging of variable profiles such as density, void ratio and solid fraction profiles, total and excess pore pressure, stresses and strains. This will lead to a better understanding of complex phenomena such as the transient gradient in lateral pressures due to silo effect in saturated soils. Interesting model and literature comparisons for the self‐weight consolidation (Fredlund, Donaldson, & Gitirana, 2009) and the silo effect results (Puertos del Estado (2006), EuroCode (2006), Japan Tech, Stands. (2009)). This study closes with the design of a decantation column prototype with frictional walls as the main future line of research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenosine released during cardiac ischemia exerts a potent, protective effect in the heart. A newly recognized adenosine receptor, the A3 subtype, is expressed on the cardiac ventricular cell, and its activation protects the ventricular heart cell against injury during a subsequent exposure to ischemia. A cultured chicken ventricular myocyte model was used to investigate the cardioprotective role of a novel adenosine A3 receptor. The protection mediated by prior activation of A3 receptors exhibits a significantly longer duration than that produced by activation of the adenosine A1 receptor. Prior exposure of the myocytes to brief ischemia also protected them against injury sustained during a subsequent exposure to prolonged ischemia. The adenosine A3 receptor-selective antagonist 3-ethyl 5-benzyl-2-methyl-6-phenyl-4-phenylethynyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate (MRS1191) caused a biphasic inhibition of the protective effect of the brief ischemia. The concomitant presence of the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) converted the MRS1191-induced dose inhibition curve to a monophasic one. The combined presence of both antagonists abolished the protective effect induced by the brief ischemia. Thus, activation of both A1 and A3 receptors is required to mediate the cardioprotective effect of the brief ischemia. Cardiac atrial cells lack native A3 receptors and exhibit a shorter duration of cardioprotection than do ventricular cells. Transfection of atrial cells with cDNA encoding the human adenosine A3 receptor causes a sustained A3 agonist-mediated cardioprotection. The study indicates that cardiac adenosine A3 receptor mediates a sustained cardioprotective function and represents a new cardiac therapeutic target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that restoration of photoinduced electron flow and O2 evolution with Mn2+ in Mn-depleted photosystem II (PSII) membrane fragments isolated from spinach chloroplasts is considerably increased with bicarbonate in the region pH 5.0–8.0 in bicarbonate-depleted medium. In buffered solutions equilibrated with the atmosphere (nondepleted of bicarbonate), the bicarbonate effect is observed only at pH lower than the pK of H2CO3 dissociation (6.4), which indicates that HCO3− is the essential species for the restoration effect. The addition of just 2 Mn2+ atoms per one PSII reaction center is enough for the maximal reactivation when bicarbonate is present in the medium. Analysis of bicarbonate concentration dependence of the restoration effect reveals two binding sites for bicarbonate with apparent dissociation constant (Kd) of ≈2.5 μM and 20–34 μM when 2,6-dichloro-p-benzoquinone is used as electron acceptor, while in the presence of silicomolybdate only the latter one remains. Similar bicarbonate concentration dependence of O2 evolution was obtained in untreated Mn-containing PSII membrane fragments. It is suggested that the Kd of 20–34 μM is associated with the donor side of PSII while the location of the lower Kd binding site is not quite clear. The conclusion is made that bicarbonate is an essential constituent of the water-oxidizing complex of PSII, important for its assembly and maintenance in the functionally active state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The β cell-specific glucose-sensitive factor (GSF), which binds the A3 motif of the rat I and human insulin promoters, is modulated by extracellular glucose. A single mutation in the GSF binding site of the human insulin promoter abolishes the stimulation by high glucose only in normal islets, supporting the suggested physiological role of GSF in the glucose-regulated expression of the insulin gene. GSF binding activity was observed in all insulin-producing cells. We have therefore purified this activity from the rat insulinoma RIN and found that a single polypeptide of 45 kDa was responsible for DNA binding. Its amino acid sequence, determined by microsequencing, provided direct evidence that GSF corresponds to insulin promoter factor 1 (IPF-1; also known as PDX-1) and that, in addition to its essential roles in development and differentiation of pancreatic islets and in β cell-specific gene expression, it functions as mediator of the glucose effect on insulin gene transcription in differentiated β cells. The human cDNA coding for GSF/IPF-1 has been cloned, its cell and tissue distribution is described. Its expression in the glucagon-producing cell line αTC1 transactivates the wild-type human insulin promoter more efficiently than the mutated construct. It is demonstrated that high levels of ectopic GSF/IPF-1 inhibit the expression of the human insulin gene in normal islets, but not in transformed βTC1 cells. These results suggest the existence of a control mechanism, such as requirement for a coactivator of GSF/IPF-1, which may be present in limiting amounts in normal as opposed to transformed β cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structures of the ligand-binding domain (LBD) of the vitamin D receptor complexed to 1α,25(OH)2D3 and the 20-epi analogs, MC1288 and KH1060, show that the protein conformation is identical, conferring a general character to the observation first made for retinoic acid receptor (RAR) that, for a given LBD, the agonist conformation is unique, the ligands adapting to the binding pocket. In all complexes, the A- to D-ring moieties of the ligands adopt the same conformation and form identical contacts with the protein. Differences are observed only for the 17β-aliphatic chains that adapt their conformation to anchor the 25-hydroxyl group to His-305 and His-397. The inverted geometry of the C20 methyl group induces different paths of the aliphatic chains. The ligands exhibit a low-energy conformation for MC1288 and a more strained conformation for the two others. KH1060 compensates this energy cost by additional contacts. Based on the present data, the explanation of the superagonist effect is to be found in higher stability and longer half-life of the active complex, thereby excluding different conformations of the ligand binding domain.