990 resultados para DNA MINOR-GROOVE
Resumo:
This paper examines time management in the recording studio from the perspective of the music producer. The paper is presented in the form of a guide that will provide a common language to music clientele and technical personnel to help achieve the best possible creative outcome. The research for the guide combined the author's experience, literary evidence and external assessment to work towards establishing a practical industry resource. The result of the study explored how the success of any recording project can be forecast before valuable resources are committed. The feedback from the survey group was positive and some professionals recognised an immediate application for the procedural guide, which exceeded the author's expectations.
Resumo:
A novel method for genotyping the clustered, regularly interspaced short-palindromic-repeat (CRISPR) locus of Campylobacter jejuni is described. Following real-time PCR, CRISPR products were subjected to high-resolution melt (HRM) analysis, a new technology that allows precise melt profile determination of amplicons. This investigation shows that the CRISPR HRM assay provides a powerful addition to existing C. jejuni genotyping methods and emphasizes the potential of HRM for genotyping short sequence repeats in other species
Resumo:
The monogeneric family Fergusoninidae consists of gall-forming flies that, together with Fergusobia (Tylenchida: Neotylenchidae) nematodes, form the only known mutualistic association between insects and nematodes. In this study, the entire 16,000 bp mitochondrial genome of Fergusonina taylori Nelson and Yeates was sequenced. The circular genome contains one encoding region including 27 genes and one non-coding A þT-rich region. The arrangement of the proteincoding, ribosomal RNA (rRNA) and transfer RNA (tRNA) genes was the same as that found in the ancestral insect. Nucleotide composition is highly A þ T biased. All of the protein initiation codons are ATN, except for nad1 which begins with TTT. All 22 tRNA anticodons of F. taylori match those observed in Drosophila yakuba, and all form the typical cloverleaf structure except for tRNA-Ser (AGN) which lacks a dihydrouridine (DHU) arm. Secondary structural features of the rRNA genes of Fergusonina are similar to those proposed for other insects, with minor modifications. The mitochondrial genome of Fergusonina presented here may prove valuable for resolving the sister group to the Fergusoninidae, and expands the available mtDNA data sources for acalyptrates overall.
Resumo:
Studies continue to report ancient DNA sequences and viable microbial cells that are many millions of years old. In this paper we evaluate some of the most extravagant claims of geologically ancient DNA. We conclude that although exciting, the reports suffer from inadequate experimental setup and insufficient authentication of results. Consequently, it remains doubtful whether amplifiable DNA sequences and viable bacteria can survive over geological timescales. To enhance the credibility of future studies and assist in discarding false-positive results, we propose a rigorous set of authentication criteria for work with geologically ancient DNA.