901 resultados para Computer Network Resources
Resumo:
A televisão nos dias atuais tem sofrido inúmeras inovações tecnológicas nos campos das transmissões multimídia, qualidade audio-visual e diversidade de funcionalidades. Entretanto, esta essencialmente mantêm sua característica de fornecer informações de forma quase que instantânea à população. O ambiente atual da televisão digital é caracterizado pela coexistência de inúmeros dispositivos capazes de oferecerem uma experiência televisa, associando-se computadores pessoais, smartphones, tablets e outros eletrônicos de consumo. Ainda, pode se incluir a este cenário a disponibilidade de inúmeras redes de transporte de dados tais como a radiodifusão, satélite, cabo e redes em banda larga. Este cenário diversificado, em termos de dispositivos e redes, é denominado de cenário de televisão digital híbrida, a qual destaca-se a interação do expectador com os diversos dispositivos. Estes cenários, por sua vez, motivam o desenvolvimento de tecnologias que permitem o aperfeiçoamento da pervasividade e dos meios pelos os quais os aplicativos possam ser suportados em diferentes plataformas. Este trabalho propõe ambientes interoperáveis envolvendo a televisão digital interativa e outros eletrônicos de consumo, aos quais foram realizados estudos e experimentos para se observar diferentes técnicas de sincronização e comunicação entre plataformas de interatividade para a televisão digital híbrida. Os resultados apontam para a possibilidade de cenários interoperáveis envolvendo o uso de marcadores e também recursos de redes e serviços TCP/IP, levando em consideração a eficiência e eficácia nos diferentes métodos. Conclui-se que os resultados odem motivar o desenvolvimento de cenários diferenciados envolvendo a televisão digital interativa e dispositivos de segunda tela, o que incrementa a interatividade e as formas de entretenimento.
Resumo:
In recent years many real time applications need to handle data streams. We consider the distributed environments in which remote data sources keep on collecting data from real world or from other data sources, and continuously push the data to a central stream processor. In these kinds of environments, significant communication is induced by the transmitting of rapid, high-volume and time-varying data streams. At the same time, the computing overhead at the central processor is also incurred. In this paper, we develop a novel filter approach, called DTFilter approach, for evaluating the windowed distinct queries in such a distributed system. DTFilter approach is based on the searching algorithm using a data structure of two height-balanced trees, and it avoids transmitting duplicate items in data streams, thus lots of network resources are saved. In addition, theoretical analysis of the time spent in performing the search, and of the amount of memory needed is provided. Extensive experiments also show that DTFilter approach owns high performance.
Resumo:
This work reports the developnent of a mathenatical model and distributed, multi variable computer-control for a pilot plant double-effect climbing-film evaporator. A distributed-parameter model of the plant has been developed and the time-domain model transformed into the Laplace domain. The model has been further transformed into an integral domain conforming to an algebraic ring of polynomials, to eliminate the transcendental terms which arise in the Laplace domain due to the distributed nature of the plant model. This has made possible the application of linear control theories to a set of linear-partial differential equations. The models obtained have well tracked the experimental results of the plant. A distributed-computer network has been interfaced with the plant to implement digital controllers in a hierarchical structure. A modern rnultivariable Wiener-Hopf controller has been applled to the plant model. The application has revealed a limitation condition that the plant matrix should be positive-definite along the infinite frequency axis. A new multi variable control theory has emerged fram this study, which avoids the above limitation. The controller has the structure of the modern Wiener-Hopf controller, but with a unique feature enabling a designer to specify the closed-loop poles in advance and to shape the sensitivity matrix as required. In this way, the method treats directly the interaction problems found in the chemical processes with good tracking and regulation performances. Though the ability of the analytical design methods to determine once and for all whether a given set of specifications can be met is one of its chief advantages over the conventional trial-and-error design procedures. However, one disadvantage that offsets to some degree the enormous advantages is the relatively complicated algebra that must be employed in working out all but the simplest problem. Mathematical algorithms and computer software have been developed to treat some of the mathematical operations defined over the integral domain, such as matrix fraction description, spectral factorization, the Bezout identity, and the general manipulation of polynomial matrices. Hence, the design problems of Wiener-Hopf type of controllers and other similar algebraic design methods can be easily solved.
Resumo:
B-ISDN is a universal network which supports diverse mixes of service, applications and traffic. ATM has been accepted world-wide as the transport technique for future use in B-ISDN. ATM, being a simple packet oriented transfer technique, provides a flexible means for supporting a continuum of transport rates and is efficient due to possible statistical sharing of network resources by multiple users. In order to fully exploit the potential statistical gain, while at the same time provide diverse service and traffic mixes, an efficient traffic control must be designed. Traffic controls which include congestion and flow control are a fundamental necessity to the success and viability of future B-ISDN. Congestion and flow control is difficult in the broadband environment due to the high speed link, the wide area distance, diverse service requirements and diverse traffic characteristics. Most congestion and flow control approaches in conventional packet switched networks are reactive in nature and are not applicable in the B-ISDN environment. In this research, traffic control procedures mainly based on preventive measures for a private ATM-based network are proposed and their performance evaluated. The various traffic controls include CAC, traffic flow enforcement, priority control and an explicit feedback mechanism. These functions operate at call level and cell level. They are carried out distributively by the end terminals, the network access points and the internal elements of the network. During the connection set-up phase, the CAC decides the acceptance or denial of a connection request and allocates bandwidth to the new connection according to three schemes; peak bit rate, statistical rate and average bit rate. The statistical multiplexing rate is based on a `bufferless fluid flow model' which is simple and robust. The allocation of an average bit rate to data traffic at the expense of delay obviously improves the network bandwidth utilisation.
Minority enterprise in the clothing industry: an analysis of Asian jeans manufacturers in Birmingham
Resumo:
This thesis discusses and assesses the resources available to Asian entrepreneurs in the West Midlands' clothing industry and how they are used by these small businessmen in order to address opportunities in the market economy within the constraints imposed. The fashion industry is volatile and is dependent upon flexible firms which can respond quickly to shortrun production schedules. Small firms are best able to respond to this market environment. Production of jeans presents an interesting departure from the mainstream fashion industry. It is traditionally gared towards longrun production schedules where multinational enterprises have artificially diversified the market, promoting the 'right' brand name and have established control of the upper end of the market, whilst imports from Newly Developing Countries have catered for cheap copies at the lower end of the market. In recent years, a fashion element to jeans has emerged, thus opening a market gap for U.K. manufacturers to respond in the same way as for other fashion articles. A large immigrant population, previously serving the now declining factories and foundries of the West Midlands but, through redundancy, no longer a part of this employment sector, has ~5ponded to economic constraints and market opportunities by drawing on ethnic network resources for competitive access to labour, finance and contacts, to attack the emergent market gap. Two models of these Asian entrepreneurs are developed. One being somecne who has professionally and actively tackled the market gap and become established. These entrepreneurs are usually educated and have personal experience in business and were amongst the first to perceive opportunities to enter the industry, actively utilising their ethnicity as a resource upon which to draw for favorable access to cheap, flexible labour and capital. The second model is composed of later entrants to jeans manufacturing. They have less formal education and experience and have been pushed into self-employment by constraints of unemployment. Their ethnicity is passively used as a resource. They are more likely confined to the marginal activity of 'cut make and trim' and have little opportunity to increase profit margins, become estalished or expand.
Resumo:
This paper introduces a joint load balancing and hotspot mitigation protocol for mobile ad-hoc network (MANET) termed by us as 'load_energy balance + hotspot mitigation protocol (LEB+HM)'. We argue that although ad-hoc wireless networks have limited network resources - bandwidth and power, prone to frequent link/node failures and have high security risk; existing ad hoc routing protocols do not put emphasis on maintaining robust link/node, efficient use of network resources and on maintaining the security of the network. Typical route selection metrics used by existing ad hoc routing protocols are shortest hop, shortest delay, and loop avoidance. These routing philosophy have the tendency to cause traffic concentration on certain regions or nodes, leading to heavy contention, congestion and resource exhaustion which in turn may result in increased end-to-end delay, packet loss and faster battery power depletion, degrading the overall performance of the network. Also in most existing on-demand ad hoc routing protocols intermediate nodes are allowed to send route reply RREP to source in response to a route request RREQ. In such situation a malicious node can send a false optimal route to the source so that data packets sent will be directed to or through it, and tamper with them as wish. It is therefore desirable to adopt routing schemes which can dynamically disperse traffic load, able to detect and remove any possible bottlenecks and provide some form of security to the network. In this paper we propose a combine adaptive load_energy balancing and hotspot mitigation scheme that aims at evenly distributing network traffic load and energy, mitigate against any possible occurrence of hotspot and provide some form of security to the network. This combine approach is expected to yield high reliability, availability and robustness, that best suits any dynamic and scalable ad hoc network environment. Dynamic source routing (DSR) was use as our underlying protocol for the implementation of our algorithm. Simulation comparison of our protocol to that of original DSR shows that our protocol has reduced node/link failure, even distribution of battery energy, and better network service efficiency.
Resumo:
Flexible optical networking is identified today as the solution that offers smooth system upgradability towards Tb/s capacities and optimized use of network resources. However, in order to fully exploit the potentials of flexible spectrum allocation and networking, the development of a flexible switching node is required capable to adaptively add, drop and switch tributaries with variable bandwidth characteristics from/to ultra-high capacity wavelength channels at the lowest switching granularity. This paper presents the main concept and technology solutions envisioned by the EU funded project FOX-C, which targets the design, development and evaluation of the first functional system prototype of flexible add-drop and switching cross-connects. The key developments enable ultra-fine switching granularity at the optical subcarrier level, providing end-to-end routing of any tributary channel with flexible bandwidth down to 10Gb/s (or even lower) carried over wavelength superchannels, each with an aggregated capacity beyond 1Tb/s. © 2014 IEEE.
Resumo:
Throughput plays a vital role for data transfer in Vehicular Networks which is useful for both safety and non-safety applications. An algorithm that adapts to mobile environment by using Context information has been proposed in this paper. Since one of the problems of existing rate adaptation algorithm is underutilization of link capacity in Vehicular environments, we have demonstrated that in wireless and mobile environments, vehicles can adapt to high mobility link condition and still perform better due to regular vehicles that will be out of communication range due to range checking and then de-congest the network thereby making the system perform better since fewer vehicles will contend for network resources. In this paper, we have design, implement and analyze ACARS, a more robust algorithm with significant increase in throughput performance and energy efficiency in the mist of high mobility of vehicles.
Resumo:
In this paper the network problem of determining all-pairs shortest-path is examined. A distributed algorithm which runs in O(n) time on a network of n nodes is presented. The number of messages of the algorithm is O(e+n log n) where e is the number of communication links of the network. We prove that this algorithm is time optimal.
Resumo:
Long reach-passive optical networks (LR-PON) are being proposed as a means of enabling ubiquitous fiber-to-the-home (FTTH) by massive sharing of network resources and therefore reducing per customer costs to affordable levels. In this paper, we analyze the chain solutions for LR-PON deployment in urban and rural areas at 100-Gb/s point-to-point transmission using dual polarization-quaternary phase shift-keying (DP-QPSK) modulation. The numerical analysis shows that with appropriate finite impulse response (FIR) filter designs, 100-Gb/s transmission can be achieved with at least 512 way split and up to 160 km total distance, which is sufficient for many of the optical paths in a practical situation, for point-to-point link from one LR-PON to another LR-PON through the optical switch at the metro nodes and across a core light path through the core network without regeneration.
Resumo:
Today, most conventional surveillance networks are based on analog system, which has a lot of constraints like manpower and high-bandwidth requirements. It becomes the barrier for today's surveillance network development. This dissertation describes a digital surveillance network architecture based on the H.264 coding/decoding (CODEC) System-on-a-Chip (SoC) platform. The proposed digital surveillance network architecture includes three major layers: software layer, hardware layer, and the network layer. The following outlines the contributions to the proposed digital surveillance network architecture. (1) We implement an object recognition system and an object categorization system on the software layer by applying several Digital Image Processing (DIP) algorithms. (2) For better compression ratio and higher video quality transfer, we implement two new modules on the hardware layer of the H.264 CODEC core, i.e., the background elimination module and the Directional Discrete Cosine Transform (DDCT) module. (3) Furthermore, we introduce a Digital Signal Processor (DSP) sub-system on the main bus of H.264 SoC platforms as the major hardware support system for our software architecture. Thus we combine the software and hardware platforms to be an intelligent surveillance node. Lab results show that the proposed surveillance node can dramatically save the network resources like bandwidth and storage capacity.
Resumo:
An important issue of resource distribution is the fairness of the distribution. For example, computer network management wishes to distribute network resource fairly to its users. To describe the fairness of the resource distribution, a quantitative fairness score function was proposed in 1984 by Jain et al. The purpose of this paper is to propose a modified network sharing fairness function so that the users can be treated differently according to their priority levels. The mathematical properties are discussed. The proposed fairness score function keeps all the nice properties of and provides better performance when the network users have different priority levels.
Resumo:
Various physical systems have dynamics that can be modeled by percolation processes. Percolation is used to study issues ranging from fluid diffusion through disordered media to fragmentation of a computer network caused by hacker attacks. A common feature of all of these systems is the presence of two non-coexistent regimes associated to certain properties of the system. For example: the disordered media can allow or not allow the flow of the fluid depending on its porosity. The change from one regime to another characterizes the percolation phase transition. The standard way of analyzing this transition uses the order parameter, a variable related to some characteristic of the system that exhibits zero value in one of the regimes and a nonzero value in the other. The proposal introduced in this thesis is that this phase transition can be investigated without the explicit use of the order parameter, but rather through the Shannon entropy. This entropy is a measure of the uncertainty degree in the information content of a probability distribution. The proposal is evaluated in the context of cluster formation in random graphs, and we apply the method to both classical percolation (Erd¨os- R´enyi) and explosive percolation. It is based in the computation of the entropy contained in the cluster size probability distribution and the results show that the transition critical point relates to the derivatives of the entropy. Furthermore, the difference between the smooth and abrupt aspects of the classical and explosive percolation transitions, respectively, is reinforced by the observation that the entropy has a maximum value in the classical transition critical point, while that correspondence does not occurs during the explosive percolation.
Resumo:
Various physical systems have dynamics that can be modeled by percolation processes. Percolation is used to study issues ranging from fluid diffusion through disordered media to fragmentation of a computer network caused by hacker attacks. A common feature of all of these systems is the presence of two non-coexistent regimes associated to certain properties of the system. For example: the disordered media can allow or not allow the flow of the fluid depending on its porosity. The change from one regime to another characterizes the percolation phase transition. The standard way of analyzing this transition uses the order parameter, a variable related to some characteristic of the system that exhibits zero value in one of the regimes and a nonzero value in the other. The proposal introduced in this thesis is that this phase transition can be investigated without the explicit use of the order parameter, but rather through the Shannon entropy. This entropy is a measure of the uncertainty degree in the information content of a probability distribution. The proposal is evaluated in the context of cluster formation in random graphs, and we apply the method to both classical percolation (Erd¨os- R´enyi) and explosive percolation. It is based in the computation of the entropy contained in the cluster size probability distribution and the results show that the transition critical point relates to the derivatives of the entropy. Furthermore, the difference between the smooth and abrupt aspects of the classical and explosive percolation transitions, respectively, is reinforced by the observation that the entropy has a maximum value in the classical transition critical point, while that correspondence does not occurs during the explosive percolation.